Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rossros Structured version   Visualization version   GIF version

Theorem rossros 34161
Description: Rings of sets are semirings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
rossros.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
rossros.n 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
rossros (𝑆𝑄𝑆𝑁)
Distinct variable groups:   𝑂,𝑠   𝑥,𝑄,𝑦   𝑆,𝑠,𝑥,𝑦,𝑧   𝑡,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑄(𝑧,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem rossros
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rossros.q . . . . 5 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21rossspw 34150 . . . 4 (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
3 elpwg 4608 . . . 4 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
42, 3mpbird 257 . . 3 (𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂)
510elros 34151 . . 3 (𝑆𝑄 → ∅ ∈ 𝑆)
6 uneq1 4171 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
76eleq1d 2824 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
8 difeq1 4129 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
98eleq1d 2824 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
107, 9anbi12d 632 . . . . . . . . . . 11 (𝑢 = 𝑥 → (((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠)))
11 uneq2 4172 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1211eleq1d 2824 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
13 difeq2 4130 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1413eleq1d 2824 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
1512, 14anbi12d 632 . . . . . . . . . . 11 (𝑣 = 𝑦 → (((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠) ↔ ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1610, 15cbvral2vw 3239 . . . . . . . . . 10 (∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))
1716anbi2i 623 . . . . . . . . 9 ((∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1817rabbii 3439 . . . . . . . 8 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
191, 18eqtr4i 2766 . . . . . . 7 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))}
2019inelros 34154 . . . . . 6 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
21203expb 1119 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2219difelros 34153 . . . . . . . . 9 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223expb 1119 . . . . . . . 8 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2423snssd 4814 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ⊆ 𝑆)
25 snex 5442 . . . . . . . 8 {(𝑥𝑦)} ∈ V
2625elpw 4609 . . . . . . 7 ({(𝑥𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥𝑦)} ⊆ 𝑆)
2724, 26sylibr 234 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ 𝒫 𝑆)
28 snfi 9082 . . . . . . 7 {(𝑥𝑦)} ∈ Fin
2928a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ Fin)
30 disjxsn 5142 . . . . . . 7 Disj 𝑡 ∈ {(𝑥𝑦)}𝑡
3130a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → Disj 𝑡 ∈ {(𝑥𝑦)}𝑡)
32 unisng 4930 . . . . . . . 8 ((𝑥𝑦) ∈ 𝑆 {(𝑥𝑦)} = (𝑥𝑦))
3323, 32syl 17 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} = (𝑥𝑦))
3433eqcomd 2741 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) = {(𝑥𝑦)})
35 eleq1 2827 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥𝑦)} ∈ Fin))
36 disjeq1 5122 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (Disj 𝑡𝑧 𝑡Disj 𝑡 ∈ {(𝑥𝑦)}𝑡))
37 unieq 4923 . . . . . . . . 9 (𝑧 = {(𝑥𝑦)} → 𝑧 = {(𝑥𝑦)})
3837eqeq2d 2746 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → ((𝑥𝑦) = 𝑧 ↔ (𝑥𝑦) = {(𝑥𝑦)}))
3935, 36, 383anbi123d 1435 . . . . . . 7 (𝑧 = {(𝑥𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})))
4039rspcev 3622 . . . . . 6 (({(𝑥𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4127, 29, 31, 34, 40syl13anc 1371 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4221, 41jca 511 . . . 4 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
4342ralrimivva 3200 . . 3 (𝑆𝑄 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
444, 5, 433jca 1127 . 2 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
45 rossros.n . . 3 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
4645issros 34156 . 2 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
4744, 46sylibr 234 1 (𝑆𝑄𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  Disj wdisj 5115  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-disj 5116  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator