Step | Hyp | Ref
| Expression |
1 | | rossros.q |
. . . . 5
⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
2 | 1 | rossspw 32037 |
. . . 4
⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
3 | | elpwg 4533 |
. . . 4
⊢ (𝑆 ∈ 𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ↔ 𝑆 ⊆ 𝒫 𝑂)) |
4 | 2, 3 | mpbird 256 |
. . 3
⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝒫 𝒫 𝑂) |
5 | 1 | 0elros 32038 |
. . 3
⊢ (𝑆 ∈ 𝑄 → ∅ ∈ 𝑆) |
6 | | uneq1 4086 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ∪ 𝑣) = (𝑥 ∪ 𝑣)) |
7 | 6 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ∪ 𝑣) ∈ 𝑠 ↔ (𝑥 ∪ 𝑣) ∈ 𝑠)) |
8 | | difeq1 4046 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ∖ 𝑣) = (𝑥 ∖ 𝑣)) |
9 | 8 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ∖ 𝑣) ∈ 𝑠 ↔ (𝑥 ∖ 𝑣) ∈ 𝑠)) |
10 | 7, 9 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑥 → (((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠) ↔ ((𝑥 ∪ 𝑣) ∈ 𝑠 ∧ (𝑥 ∖ 𝑣) ∈ 𝑠))) |
11 | | uneq2 4087 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → (𝑥 ∪ 𝑣) = (𝑥 ∪ 𝑦)) |
12 | 11 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑦 → ((𝑥 ∪ 𝑣) ∈ 𝑠 ↔ (𝑥 ∪ 𝑦) ∈ 𝑠)) |
13 | | difeq2 4047 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → (𝑥 ∖ 𝑣) = (𝑥 ∖ 𝑦)) |
14 | 13 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑦 → ((𝑥 ∖ 𝑣) ∈ 𝑠 ↔ (𝑥 ∖ 𝑦) ∈ 𝑠)) |
15 | 12, 14 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑦 → (((𝑥 ∪ 𝑣) ∈ 𝑠 ∧ (𝑥 ∖ 𝑣) ∈ 𝑠) ↔ ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))) |
16 | 10, 15 | cbvral2vw 3385 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠)) |
17 | 16 | anbi2i 622 |
. . . . . . . . 9
⊢ ((∅
∈ 𝑠 ∧
∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))) |
18 | 17 | rabbii 3397 |
. . . . . . . 8
⊢ {𝑠 ∈ 𝒫 𝒫
𝑂 ∣ (∅ ∈
𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
19 | 1, 18 | eqtr4i 2769 |
. . . . . . 7
⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠))} |
20 | 19 | inelros 32041 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∩ 𝑦) ∈ 𝑆) |
21 | 20 | 3expb 1118 |
. . . . 5
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∩ 𝑦) ∈ 𝑆) |
22 | 19 | difelros 32040 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝑄 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∖ 𝑦) ∈ 𝑆) |
23 | 22 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∖ 𝑦) ∈ 𝑆) |
24 | 23 | snssd 4739 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ⊆ 𝑆) |
25 | | snex 5349 |
. . . . . . . 8
⊢ {(𝑥 ∖ 𝑦)} ∈ V |
26 | 25 | elpw 4534 |
. . . . . . 7
⊢ ({(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥 ∖ 𝑦)} ⊆ 𝑆) |
27 | 24, 26 | sylibr 233 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆) |
28 | | snfi 8788 |
. . . . . . 7
⊢ {(𝑥 ∖ 𝑦)} ∈ Fin |
29 | 28 | a1i 11 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ∈ Fin) |
30 | | disjxsn 5063 |
. . . . . . 7
⊢
Disj 𝑡 ∈
{(𝑥 ∖ 𝑦)}𝑡 |
31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡) |
32 | | unisng 4857 |
. . . . . . . 8
⊢ ((𝑥 ∖ 𝑦) ∈ 𝑆 → ∪ {(𝑥 ∖ 𝑦)} = (𝑥 ∖ 𝑦)) |
33 | 23, 32 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∪
{(𝑥 ∖ 𝑦)} = (𝑥 ∖ 𝑦)) |
34 | 33 | eqcomd 2744 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)}) |
35 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥 ∖ 𝑦)} ∈ Fin)) |
36 | | disjeq1 5042 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → (Disj 𝑡 ∈ 𝑧 𝑡 ↔ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡)) |
37 | | unieq 4847 |
. . . . . . . . 9
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ∪ 𝑧 = ∪
{(𝑥 ∖ 𝑦)}) |
38 | 37 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ((𝑥 ∖ 𝑦) = ∪ 𝑧 ↔ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)})) |
39 | 35, 36, 38 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧) ↔ ({(𝑥 ∖ 𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)}))) |
40 | 39 | rspcev 3552 |
. . . . . 6
⊢ (({(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥 ∖ 𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)) |
41 | 27, 29, 31, 34, 40 | syl13anc 1370 |
. . . . 5
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)) |
42 | 21, 41 | jca 511 |
. . . 4
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧))) |
43 | 42 | ralrimivva 3114 |
. . 3
⊢ (𝑆 ∈ 𝑄 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧))) |
44 | 4, 5, 43 | 3jca 1126 |
. 2
⊢ (𝑆 ∈ 𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))) |
45 | | rossros.n |
. . 3
⊢ 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∩ 𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))} |
46 | 45 | issros 32043 |
. 2
⊢ (𝑆 ∈ 𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))) |
47 | 44, 46 | sylibr 233 |
1
⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝑁) |