Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rossros Structured version   Visualization version   GIF version

Theorem rossros 32048
Description: Rings of sets are semirings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
rossros.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
rossros.n 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
rossros (𝑆𝑄𝑆𝑁)
Distinct variable groups:   𝑂,𝑠   𝑥,𝑄,𝑦   𝑆,𝑠,𝑥,𝑦,𝑧   𝑡,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑄(𝑧,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem rossros
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rossros.q . . . . 5 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21rossspw 32037 . . . 4 (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
3 elpwg 4533 . . . 4 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
42, 3mpbird 256 . . 3 (𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂)
510elros 32038 . . 3 (𝑆𝑄 → ∅ ∈ 𝑆)
6 uneq1 4086 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
76eleq1d 2823 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
8 difeq1 4046 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
98eleq1d 2823 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
107, 9anbi12d 630 . . . . . . . . . . 11 (𝑢 = 𝑥 → (((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠)))
11 uneq2 4087 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1211eleq1d 2823 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
13 difeq2 4047 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1413eleq1d 2823 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
1512, 14anbi12d 630 . . . . . . . . . . 11 (𝑣 = 𝑦 → (((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠) ↔ ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1610, 15cbvral2vw 3385 . . . . . . . . . 10 (∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))
1716anbi2i 622 . . . . . . . . 9 ((∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1817rabbii 3397 . . . . . . . 8 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
191, 18eqtr4i 2769 . . . . . . 7 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))}
2019inelros 32041 . . . . . 6 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
21203expb 1118 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2219difelros 32040 . . . . . . . . 9 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223expb 1118 . . . . . . . 8 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2423snssd 4739 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ⊆ 𝑆)
25 snex 5349 . . . . . . . 8 {(𝑥𝑦)} ∈ V
2625elpw 4534 . . . . . . 7 ({(𝑥𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥𝑦)} ⊆ 𝑆)
2724, 26sylibr 233 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ 𝒫 𝑆)
28 snfi 8788 . . . . . . 7 {(𝑥𝑦)} ∈ Fin
2928a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ Fin)
30 disjxsn 5063 . . . . . . 7 Disj 𝑡 ∈ {(𝑥𝑦)}𝑡
3130a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → Disj 𝑡 ∈ {(𝑥𝑦)}𝑡)
32 unisng 4857 . . . . . . . 8 ((𝑥𝑦) ∈ 𝑆 {(𝑥𝑦)} = (𝑥𝑦))
3323, 32syl 17 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} = (𝑥𝑦))
3433eqcomd 2744 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) = {(𝑥𝑦)})
35 eleq1 2826 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥𝑦)} ∈ Fin))
36 disjeq1 5042 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (Disj 𝑡𝑧 𝑡Disj 𝑡 ∈ {(𝑥𝑦)}𝑡))
37 unieq 4847 . . . . . . . . 9 (𝑧 = {(𝑥𝑦)} → 𝑧 = {(𝑥𝑦)})
3837eqeq2d 2749 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → ((𝑥𝑦) = 𝑧 ↔ (𝑥𝑦) = {(𝑥𝑦)}))
3935, 36, 383anbi123d 1434 . . . . . . 7 (𝑧 = {(𝑥𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})))
4039rspcev 3552 . . . . . 6 (({(𝑥𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4127, 29, 31, 34, 40syl13anc 1370 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4221, 41jca 511 . . . 4 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
4342ralrimivva 3114 . . 3 (𝑆𝑄 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
444, 5, 433jca 1126 . 2 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
45 rossros.n . . 3 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
4645issros 32043 . 2 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
4744, 46sylibr 233 1 (𝑆𝑄𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  Disj wdisj 5035  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-disj 5036  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator