Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inopnd Structured version   Visualization version   GIF version

Theorem inopnd 45150
Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
inopnd.1 (𝜑𝐽 ∈ Top)
inopnd.2 (𝜑𝐴𝐽)
inopnd.3 (𝜑𝐵𝐽)
Assertion
Ref Expression
inopnd (𝜑 → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem inopnd
StepHypRef Expression
1 inopnd.1 . 2 (𝜑𝐽 ∈ Top)
2 inopnd.2 . 2 (𝜑𝐴𝐽)
3 inopnd.3 . 2 (𝜑𝐵𝐽)
4 inopn 22793 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3916  Topctop 22787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-top 22788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator