![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inopnd | Structured version Visualization version GIF version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
inopnd.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
inopnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
inopnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
Ref | Expression |
---|---|
inopnd | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopnd.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | inopnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
3 | inopnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
4 | inopn 22401 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | |
5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3948 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-top 22396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |