Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inopnd Structured version   Visualization version   GIF version

Theorem inopnd 44392
Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
inopnd.1 (𝜑𝐽 ∈ Top)
inopnd.2 (𝜑𝐴𝐽)
inopnd.3 (𝜑𝐵𝐽)
Assertion
Ref Expression
inopnd (𝜑 → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem inopnd
StepHypRef Expression
1 inopnd.1 . 2 (𝜑𝐽 ∈ Top)
2 inopnd.2 . 2 (𝜑𝐴𝐽)
3 inopnd.3 . 2 (𝜑𝐵𝐽)
4 inopn 22745 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  cin 3940  Topctop 22739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-in 3948  df-ss 3958  df-pw 4597  df-top 22740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator