Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inopnd Structured version   Visualization version   GIF version

Theorem inopnd 43843
Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
inopnd.1 (𝜑𝐽 ∈ Top)
inopnd.2 (𝜑𝐴𝐽)
inopnd.3 (𝜑𝐵𝐽)
Assertion
Ref Expression
inopnd (𝜑 → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem inopnd
StepHypRef Expression
1 inopnd.1 . 2 (𝜑𝐽 ∈ Top)
2 inopnd.2 . 2 (𝜑𝐴𝐽)
3 inopnd.3 . 2 (𝜑𝐵𝐽)
4 inopn 22401 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
51, 2, 3, 4syl3anc 1372 1 (𝜑 → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3948  Topctop 22395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605  df-top 22396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator