MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inopn Structured version   Visualization version   GIF version

Theorem inopn 21506
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
inopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem inopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 21502 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
21ibi 269 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
32simprd 498 . . 3 (𝐽 ∈ Top → ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)
4 ineq1 4180 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
54eleq1d 2897 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ 𝐽 ↔ (𝐴𝑦) ∈ 𝐽))
6 ineq2 4182 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76eleq1d 2897 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ 𝐽 ↔ (𝐴𝐵) ∈ 𝐽))
85, 7rspc2v 3632 . . 3 ((𝐴𝐽𝐵𝐽) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽 → (𝐴𝐵) ∈ 𝐽))
93, 8syl5com 31 . 2 (𝐽 ∈ Top → ((𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽))
1093impib 1112 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  wral 3138  cin 3934  wss 3935   cuni 4837  Topctop 21500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-in 3942  df-ss 3951  df-pw 4540  df-top 21501
This theorem is referenced by:  fitop  21507  tgclb  21577  topbas  21579  difopn  21641  uncld  21648  ntrin  21668  toponmre  21700  innei  21732  restopnb  21782  ordtopn3  21803  cnprest  21896  islly2  22091  kgentopon  22145  llycmpkgen2  22157  ptbasin  22184  txcnp  22227  txcnmpt  22231  qtoptop2  22306  opnfbas  22449  hauspwpwf1  22594  mopnin  23106  reconnlem2  23434  lmxrge0  31195  cvmsss2  32521  cvmcov2  32522  icccncfext  42170
  Copyright terms: Public domain W3C validator