![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inopn | Structured version Visualization version GIF version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
inopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 21028 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 259 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simprd 490 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
4 | ineq1 4005 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
5 | 4 | eleq1d 2863 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝑦) ∈ 𝐽)) |
6 | ineq2 4006 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
7 | 6 | eleq1d 2863 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝐵) ∈ 𝐽)) |
8 | 5, 7 | rspc2v 3510 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
10 | 9 | 3impib 1145 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∀wal 1651 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∩ cin 3768 ⊆ wss 3769 ∪ cuni 4628 Topctop 21026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-v 3387 df-in 3776 df-ss 3783 df-pw 4351 df-top 21027 |
This theorem is referenced by: fitop 21033 tgclb 21103 topbas 21105 difopn 21167 uncld 21174 ntrin 21194 toponmre 21226 innei 21258 restopnb 21308 ordtopn3 21329 cnprest 21422 islly2 21616 kgentopon 21670 llycmpkgen2 21682 ptbasin 21709 txcnp 21752 txcnmpt 21756 qtoptop2 21831 opnfbas 21974 hauspwpwf1 22119 mopnin 22630 reconnlem2 22958 lmxrge0 30514 cvmsss2 31773 cvmcov2 31774 icccncfext 40844 |
Copyright terms: Public domain | W3C validator |