![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inopn | Structured version Visualization version GIF version |
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
inopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 22815 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 266 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simprd 494 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
4 | ineq1 4205 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝑦) ∈ 𝐽)) |
6 | ineq2 4206 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝐵) ∈ 𝐽)) |
8 | 5, 7 | rspc2v 3620 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
10 | 9 | 3impib 1113 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4910 Topctop 22813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-in 3954 df-ss 3964 df-pw 4606 df-top 22814 |
This theorem is referenced by: fitop 22820 tgclb 22891 topbas 22893 difopn 22956 uncld 22963 ntrin 22983 toponmre 23015 innei 23047 restopnb 23097 ordtopn3 23118 cnprest 23211 islly2 23406 kgentopon 23460 llycmpkgen2 23472 ptbasin 23499 txcnp 23542 txcnmpt 23546 qtoptop2 23621 opnfbas 23764 hauspwpwf1 23909 mopnin 24424 reconnlem2 24761 lmxrge0 33558 cvmsss2 34889 cvmcov2 34890 inopnd 44523 icccncfext 45277 toplatmeet 48065 topdlat 48066 |
Copyright terms: Public domain | W3C validator |