| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inopn | Structured version Visualization version GIF version | ||
| Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| inopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 22833 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
| 4 | ineq1 4188 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝑦) ∈ 𝐽)) |
| 6 | ineq2 4189 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
| 7 | 6 | eleq1d 2819 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 8 | 5, 7 | rspc2v 3612 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 Topctop 22831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 df-top 22832 |
| This theorem is referenced by: fitop 22838 tgclb 22908 topbas 22910 difopn 22972 uncld 22979 ntrin 22999 toponmre 23031 innei 23063 restopnb 23113 ordtopn3 23134 cnprest 23227 islly2 23422 kgentopon 23476 llycmpkgen2 23488 ptbasin 23515 txcnp 23558 txcnmpt 23562 qtoptop2 23637 opnfbas 23780 hauspwpwf1 23925 mopnin 24436 reconnlem2 24767 lmxrge0 33983 cvmsss2 35296 cvmcov2 35297 inopnd 45173 icccncfext 45916 toplatmeet 48977 topdlat 48978 |
| Copyright terms: Public domain | W3C validator |