| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inopn | Structured version Visualization version GIF version | ||
| Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| inopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 22789 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽) |
| 4 | ineq1 4179 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝑦) ∈ 𝐽)) |
| 6 | ineq2 4180 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
| 7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∈ 𝐽 ↔ (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 8 | 5, 7 | rspc2v 3602 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽 → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 ∪ cuni 4874 Topctop 22787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-top 22788 |
| This theorem is referenced by: fitop 22794 tgclb 22864 topbas 22866 difopn 22928 uncld 22935 ntrin 22955 toponmre 22987 innei 23019 restopnb 23069 ordtopn3 23090 cnprest 23183 islly2 23378 kgentopon 23432 llycmpkgen2 23444 ptbasin 23471 txcnp 23514 txcnmpt 23518 qtoptop2 23593 opnfbas 23736 hauspwpwf1 23881 mopnin 24392 reconnlem2 24723 lmxrge0 33949 cvmsss2 35268 cvmcov2 35269 inopnd 45150 icccncfext 45892 toplatmeet 48995 topdlat 48996 |
| Copyright terms: Public domain | W3C validator |