MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inopn Structured version   Visualization version   GIF version

Theorem inopn 22926
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
inopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem inopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 22922 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
21ibi 267 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
32simprd 495 . . 3 (𝐽 ∈ Top → ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)
4 ineq1 4234 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
54eleq1d 2829 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ 𝐽 ↔ (𝐴𝑦) ∈ 𝐽))
6 ineq2 4235 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76eleq1d 2829 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ 𝐽 ↔ (𝐴𝐵) ∈ 𝐽))
85, 7rspc2v 3646 . . 3 ((𝐴𝐽𝐵𝐽) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽 → (𝐴𝐵) ∈ 𝐽))
93, 8syl5com 31 . 2 (𝐽 ∈ Top → ((𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽))
1093impib 1116 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976   cuni 4931  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624  df-top 22921
This theorem is referenced by:  fitop  22927  tgclb  22998  topbas  23000  difopn  23063  uncld  23070  ntrin  23090  toponmre  23122  innei  23154  restopnb  23204  ordtopn3  23225  cnprest  23318  islly2  23513  kgentopon  23567  llycmpkgen2  23579  ptbasin  23606  txcnp  23649  txcnmpt  23653  qtoptop2  23728  opnfbas  23871  hauspwpwf1  24016  mopnin  24531  reconnlem2  24868  lmxrge0  33898  cvmsss2  35242  cvmcov2  35243  inopnd  45054  icccncfext  45808  toplatmeet  48675  topdlat  48676
  Copyright terms: Public domain W3C validator