Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2rabdf Structured version   Visualization version   GIF version

Theorem ss2rabdf 45271
Description: Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
ss2rabdf.1 𝑥𝜑
ss2rabdf.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ss2rabdf (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})

Proof of Theorem ss2rabdf
StepHypRef Expression
1 ss2rabdf.1 . . 3 𝑥𝜑
2 ss2rabdf.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
31, 2ralrimia 3232 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
43ss2rabd 4021 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2113  {crab 3396  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-ral 3049  df-rab 3397  df-ss 3915
This theorem is referenced by:  pimxrneun  45610  preimageiingt  46842  preimaleiinlt  46843
  Copyright terms: Public domain W3C validator