Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2rabdf Structured version   Visualization version   GIF version

Theorem ss2rabdf 42742
Description: Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
ss2rabdf.1 𝑥𝜑
ss2rabdf.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ss2rabdf (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})

Proof of Theorem ss2rabdf
StepHypRef Expression
1 ss2rabdf.1 . . 3 𝑥𝜑
2 ss2rabdf.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 414 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3237 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 ss2rab 4010 . 2 ({𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒} ↔ ∀𝑥𝐴 (𝜓𝜒))
64, 5sylibr 233 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wnf 1783  wcel 2104  wral 3062  {crab 3284  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rab 3287  df-v 3439  df-in 3899  df-ss 3909
This theorem is referenced by:  pimxrneun  43077
  Copyright terms: Public domain W3C validator