Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2rabdf Structured version   Visualization version   GIF version

Theorem ss2rabdf 43834
Description: Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
ss2rabdf.1 𝑥𝜑
ss2rabdf.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ss2rabdf (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})

Proof of Theorem ss2rabdf
StepHypRef Expression
1 ss2rabdf.1 . . 3 𝑥𝜑
2 ss2rabdf.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 413 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3254 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 ss2rab 4068 . 2 ({𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒} ↔ ∀𝑥𝐴 (𝜓𝜒))
64, 5sylibr 233 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1785  wcel 2106  wral 3061  {crab 3432  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  pimxrneun  44189
  Copyright terms: Public domain W3C validator