|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > intmin3 | Structured version Visualization version GIF version | ||
| Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| intmin3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| intmin3.3 | ⊢ 𝜓 | 
| Ref | Expression | 
|---|---|
| intmin3 | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | intmin3.3 | . . 3 ⊢ 𝜓 | |
| 2 | intmin3.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elabg 3676 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | 
| 4 | 1, 3 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∣ 𝜑}) | 
| 5 | intss1 4963 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2714 ⊆ wss 3951 ∩ cint 4946 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-ss 3968 df-int 4947 | 
| This theorem is referenced by: intabs 5349 intidOLD 5463 | 
| Copyright terms: Public domain | W3C validator |