Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intmin3 | Structured version Visualization version GIF version |
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intmin3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
intmin3.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
intmin3 | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intmin3.3 | . . 3 ⊢ 𝜓 | |
2 | intmin3.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elabg 3600 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | mpbiri 257 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
5 | intss1 4891 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: intabs 5261 intid 5367 |
Copyright terms: Public domain | W3C validator |