MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin3 Structured version   Visualization version   GIF version

Theorem intmin3 4979
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2 (𝑥 = 𝐴 → (𝜑𝜓))
intmin3.3 𝜓
Assertion
Ref Expression
intmin3 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3 𝜓
2 intmin3.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 3665 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3mpbiri 257 . 2 (𝐴𝑉𝐴 ∈ {𝑥𝜑})
5 intss1 4966 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5syl 17 1 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  {cab 2709  wss 3947   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-int 4950
This theorem is referenced by:  intabs  5341  intidOLD  5457
  Copyright terms: Public domain W3C validator