MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin3 Structured version   Visualization version   GIF version

Theorem intmin3 4973
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2 (𝑥 = 𝐴 → (𝜑𝜓))
intmin3.3 𝜓
Assertion
Ref Expression
intmin3 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3 𝜓
2 intmin3.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 3661 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3mpbiri 258 . 2 (𝐴𝑉𝐴 ∈ {𝑥𝜑})
5 intss1 4960 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5syl 17 1 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {cab 2703  wss 3943   cint 4943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-ss 3960  df-int 4944
This theorem is referenced by:  intabs  5335  intidOLD  5451
  Copyright terms: Public domain W3C validator