![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of intidg 5468 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
intid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intidOLD | ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5442 | . . 3 ⊢ {𝐴} ∈ V | |
2 | eleq2 2828 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
3 | intid.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | snid 4667 | . . . 4 ⊢ 𝐴 ∈ {𝐴} |
5 | 2, 4 | intmin3 4981 | . . 3 ⊢ ({𝐴} ∈ V → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴} |
7 | 3 | elintab 4963 | . . . 4 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥)) |
8 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
9 | 7, 8 | mpgbir 1796 | . . 3 ⊢ 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
10 | snssi 4813 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
12 | 6, 11 | eqssi 4012 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 ⊆ wss 3963 {csn 4631 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-int 4952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |