![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of intidg 5447 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
intid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intidOLD | ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5421 | . . 3 ⊢ {𝐴} ∈ V | |
2 | eleq2 2814 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
3 | intid.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | snid 4656 | . . . 4 ⊢ 𝐴 ∈ {𝐴} |
5 | 2, 4 | intmin3 4970 | . . 3 ⊢ ({𝐴} ∈ V → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴} |
7 | 3 | elintab 4952 | . . . 4 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥)) |
8 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
9 | 7, 8 | mpgbir 1793 | . . 3 ⊢ 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
10 | snssi 4803 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
12 | 6, 11 | eqssi 3990 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2701 Vcvv 3466 ⊆ wss 3940 {csn 4620 ∩ cint 4940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-sn 4621 df-pr 4623 df-int 4941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |