| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of intidg 5429 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| intid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intidOLD | ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5403 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | eleq2 2822 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 3 | intid.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 3 | snid 4635 | . . . 4 ⊢ 𝐴 ∈ {𝐴} |
| 5 | 2, 4 | intmin3 4949 | . . 3 ⊢ ({𝐴} ∈ V → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴} |
| 7 | 3 | elintab 4931 | . . . 4 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥)) |
| 8 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
| 9 | 7, 8 | mpgbir 1798 | . . 3 ⊢ 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 10 | snssi 4781 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} |
| 12 | 6, 11 | eqssi 3973 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3457 ⊆ wss 3924 {csn 4599 ∩ cint 4919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-sn 4600 df-pr 4602 df-int 4920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |