MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intidOLD Structured version   Visualization version   GIF version

Theorem intidOLD 5433
Description: Obsolete version of intidg 5432 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intidOLD {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intidOLD
StepHypRef Expression
1 snex 5406 . . 3 {𝐴} ∈ V
2 eleq2 2823 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
3 intid.1 . . . . 5 𝐴 ∈ V
43snid 4638 . . . 4 𝐴 ∈ {𝐴}
52, 4intmin3 4952 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
61, 5ax-mp 5 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
73elintab 4934 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
8 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
97, 8mpgbir 1799 . . 3 𝐴 {𝑥𝐴𝑥}
10 snssi 4784 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
119, 10ax-mp 5 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
126, 11eqssi 3975 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  wss 3926  {csn 4601   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-int 4923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator