| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4905 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2816 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2817 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3553 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3943 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-int 4900 |
| This theorem is referenced by: intminss 4927 intmin3 4929 intab 4931 int0el 4932 trintss 5220 intex 5286 intidg 5404 oneqmini 6364 sorpssint 7673 onint 7730 onssmin 7732 onnmin 7738 nnawordex 8562 cofon1 8597 cofonr 8599 dffi2 9332 inficl 9334 dffi3 9340 tcmin 9656 tc2 9657 rankr1ai 9713 rankuni2b 9768 tcrank 9799 harval2 9912 cfflb 10172 fin23lem20 10250 fin23lem38 10262 isf32lem2 10267 intwun 10648 inttsk 10687 intgru 10727 dfnn2 12159 dfuzi 12585 trclubi 14921 trclubgi 14922 trclub 14923 trclubg 14924 cotrtrclfv 14937 trclun 14939 dfrtrcl2 14987 mremre 17524 isacs1i 17581 mrelatglb 18484 cycsubg 19105 efgrelexlemb 19647 efgcpbllemb 19652 frgpuplem 19669 rgspnmin 20518 primefld 20708 cssmre 21618 toponmre 22996 1stcfb 23348 ptcnplem 23524 fbssfi 23740 uffix 23824 ufildom1 23829 alexsublem 23947 alexsubALTlem4 23953 tmdgsum2 23999 bcth3 25247 limciun 25811 aalioulem3 26258 sltval2 27584 sltres 27590 nocvxminlem 27706 eqscut2 27735 scutun12 27739 scutbdaybnd 27744 scutbdaybnd2 27745 scutbdaylt 27747 madebdaylemlrcut 27831 cofcut1 27851 cofcutr 27855 dfn0s2 28247 shintcli 31291 shsval2i 31349 ococin 31370 chsupsn 31375 elrgspnlem4 33195 fldgensdrg 33263 fldgenssv 33264 fldgenssp 33267 insiga 34103 ldsysgenld 34126 ldgenpisyslem2 34130 mclsssvlem 35534 mclsax 35541 mclsind 35542 untint 35684 dfon2lem8 35763 dfon2lem9 35764 clsint2 36302 topmeet 36337 topjoin 36338 heibor1lem 37788 ismrcd1 42671 mzpincl 42707 mzpf 42709 mzpindd 42719 onintunirab 43200 oninfint 43209 clublem 43583 dftrcl3 43693 brtrclfv2 43700 dfrtrcl3 43706 intsaluni 46311 intsal 46312 salgenss 46318 salgencntex 46325 intubeu 48969 |
| Copyright terms: Public domain | W3C validator |