| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4903 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2821 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2822 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3547 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3936 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-int 4898 |
| This theorem is referenced by: intminss 4924 intmin3 4926 intab 4928 int0el 4929 trintss 5218 intex 5284 intidg 5400 oneqmini 6364 sorpssint 7672 onint 7729 onssmin 7731 onnmin 7737 nnawordex 8558 cofon1 8593 cofonr 8595 dffi2 9314 inficl 9316 dffi3 9322 tcmin 9636 tc2 9637 rankr1ai 9698 rankuni2b 9753 tcrank 9784 harval2 9897 cfflb 10157 fin23lem20 10235 fin23lem38 10247 isf32lem2 10252 intwun 10633 inttsk 10672 intgru 10712 dfnn2 12145 dfuzi 12570 trclubi 14905 trclubgi 14906 trclub 14907 trclubg 14908 cotrtrclfv 14921 trclun 14923 dfrtrcl2 14971 mremre 17508 isacs1i 17565 mrelatglb 18468 cycsubg 19122 efgrelexlemb 19664 efgcpbllemb 19669 frgpuplem 19686 rgspnmin 20532 primefld 20722 cssmre 21632 toponmre 23009 1stcfb 23361 ptcnplem 23537 fbssfi 23753 uffix 23837 ufildom1 23842 alexsublem 23960 alexsubALTlem4 23966 tmdgsum2 24012 bcth3 25259 limciun 25823 aalioulem3 26270 sltval2 27596 sltres 27602 nocvxminlem 27718 eqscut2 27748 scutun12 27752 scutbdaybnd 27757 scutbdaybnd2 27758 scutbdaylt 27760 madebdaylemlrcut 27845 cofcut1 27865 cofcutr 27869 dfn0s2 28261 shintcli 31311 shsval2i 31369 ococin 31390 chsupsn 31395 elrgspnlem4 33219 fldgensdrg 33287 fldgenssv 33288 fldgenssp 33291 insiga 34171 ldsysgenld 34194 ldgenpisyslem2 34198 mclsssvlem 35627 mclsax 35634 mclsind 35635 untint 35777 dfon2lem8 35853 dfon2lem9 35854 clsint2 36394 topmeet 36429 topjoin 36430 heibor1lem 37869 ismrcd1 42815 mzpincl 42851 mzpf 42853 mzpindd 42863 onintunirab 43344 oninfint 43353 clublem 43727 dftrcl3 43837 brtrclfv2 43844 dfrtrcl3 43850 intsaluni 46451 intsal 46452 salgenss 46458 salgencntex 46465 intubeu 49108 |
| Copyright terms: Public domain | W3C validator |