Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4882 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
3 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | eleq2 2827 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 5 | spcgv 3525 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
8 | 2, 7 | syl5bi 241 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
9 | 8 | ssrdv 3923 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: intminss 4902 intmin3 4904 intab 4906 int0el 4907 trintss 5204 intex 5256 oneqmini 6302 sorpssint 7564 onint 7617 onssmin 7619 onnmin 7625 nnawordex 8430 dffi2 9112 inficl 9114 dffi3 9120 tcmin 9430 tc2 9431 rankr1ai 9487 rankuni2b 9542 tcrank 9573 harval2 9686 cfflb 9946 fin23lem20 10024 fin23lem38 10036 isf32lem2 10041 intwun 10422 inttsk 10461 intgru 10501 dfnn2 11916 dfuzi 12341 trclubi 14635 trclubgi 14636 trclub 14637 trclubg 14638 cotrtrclfv 14651 trclun 14653 dfrtrcl2 14701 mremre 17230 isacs1i 17283 mrelatglb 18193 cycsubg 18742 efgrelexlemb 19271 efgcpbllemb 19276 frgpuplem 19293 primefld 19988 cssmre 20810 toponmre 22152 1stcfb 22504 ptcnplem 22680 fbssfi 22896 uffix 22980 ufildom1 22985 alexsublem 23103 alexsubALTlem4 23109 tmdgsum2 23155 bcth3 24400 limciun 24963 aalioulem3 25399 shintcli 29592 shsval2i 29650 ococin 29671 chsupsn 29676 insiga 32005 ldsysgenld 32028 ldgenpisyslem2 32032 mclsssvlem 33424 mclsax 33431 mclsind 33432 untint 33553 dfon2lem8 33672 dfon2lem9 33673 sltval2 33786 sltres 33792 nocvxminlem 33899 eqscut2 33927 scutun12 33931 scutbdaybnd 33936 scutbdaybnd2 33937 scutbdaylt 33939 madebdaylemlrcut 34006 cofcut1 34017 cofcutr 34019 clsint2 34445 topmeet 34480 topjoin 34481 heibor1lem 35894 ismrcd1 40436 mzpincl 40472 mzpf 40474 mzpindd 40484 rgspnmin 40912 clublem 41107 dftrcl3 41217 brtrclfv2 41224 dfrtrcl3 41230 intsaluni 43758 intsal 43759 salgenss 43765 salgencntex 43772 intubeu 46158 |
Copyright terms: Public domain | W3C validator |