![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4956 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
3 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | eleq2 2827 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 5 | spcgv 3595 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
9 | 8 | ssrdv 4000 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-int 4951 |
This theorem is referenced by: intminss 4978 intmin3 4980 intab 4982 int0el 4983 trintss 5283 intex 5349 intidg 5467 oneqmini 6437 sorpssint 7751 onint 7809 onssmin 7811 onnmin 7817 nnawordex 8673 cofon1 8708 cofonr 8710 dffi2 9460 inficl 9462 dffi3 9468 tcmin 9778 tc2 9779 rankr1ai 9835 rankuni2b 9890 tcrank 9921 harval2 10034 cfflb 10296 fin23lem20 10374 fin23lem38 10386 isf32lem2 10391 intwun 10772 inttsk 10811 intgru 10851 dfnn2 12276 dfuzi 12706 trclubi 15031 trclubgi 15032 trclub 15033 trclubg 15034 cotrtrclfv 15047 trclun 15049 dfrtrcl2 15097 mremre 17648 isacs1i 17701 mrelatglb 18617 cycsubg 19238 efgrelexlemb 19782 efgcpbllemb 19787 frgpuplem 19804 rgspnmin 20631 primefld 20822 cssmre 21728 toponmre 23116 1stcfb 23468 ptcnplem 23644 fbssfi 23860 uffix 23944 ufildom1 23949 alexsublem 24067 alexsubALTlem4 24073 tmdgsum2 24119 bcth3 25378 limciun 25943 aalioulem3 26390 sltval2 27715 sltres 27721 nocvxminlem 27836 eqscut2 27865 scutun12 27869 scutbdaybnd 27874 scutbdaybnd2 27875 scutbdaylt 27877 madebdaylemlrcut 27951 cofcut1 27968 cofcutr 27972 dfn0s2 28350 shintcli 31357 shsval2i 31415 ococin 31436 chsupsn 31441 elrgspnlem4 33234 fldgensdrg 33295 fldgenssv 33296 fldgenssp 33299 insiga 34117 ldsysgenld 34140 ldgenpisyslem2 34144 mclsssvlem 35546 mclsax 35553 mclsind 35554 untint 35691 dfon2lem8 35771 dfon2lem9 35772 clsint2 36311 topmeet 36346 topjoin 36347 heibor1lem 37795 ismrcd1 42685 mzpincl 42721 mzpf 42723 mzpindd 42733 onintunirab 43215 oninfint 43224 clublem 43599 dftrcl3 43709 brtrclfv2 43716 dfrtrcl3 43722 intsaluni 46284 intsal 46285 salgenss 46291 salgencntex 46298 intubeu 48772 |
Copyright terms: Public domain | W3C validator |