![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4976 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
3 | eleq1 2832 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | eleq2 2833 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 5 | spcgv 3609 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
9 | 8 | ssrdv 4014 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-int 4971 |
This theorem is referenced by: intminss 4998 intmin3 5000 intab 5002 int0el 5003 trintss 5302 intex 5362 intidg 5477 oneqmini 6447 sorpssint 7768 onint 7826 onssmin 7828 onnmin 7834 nnawordex 8693 cofon1 8728 cofonr 8730 dffi2 9492 inficl 9494 dffi3 9500 tcmin 9810 tc2 9811 rankr1ai 9867 rankuni2b 9922 tcrank 9953 harval2 10066 cfflb 10328 fin23lem20 10406 fin23lem38 10418 isf32lem2 10423 intwun 10804 inttsk 10843 intgru 10883 dfnn2 12306 dfuzi 12734 trclubi 15045 trclubgi 15046 trclub 15047 trclubg 15048 cotrtrclfv 15061 trclun 15063 dfrtrcl2 15111 mremre 17662 isacs1i 17715 mrelatglb 18630 cycsubg 19248 efgrelexlemb 19792 efgcpbllemb 19797 frgpuplem 19814 primefld 20828 cssmre 21734 toponmre 23122 1stcfb 23474 ptcnplem 23650 fbssfi 23866 uffix 23950 ufildom1 23955 alexsublem 24073 alexsubALTlem4 24079 tmdgsum2 24125 bcth3 25384 limciun 25949 aalioulem3 26394 sltval2 27719 sltres 27725 nocvxminlem 27840 eqscut2 27869 scutun12 27873 scutbdaybnd 27878 scutbdaybnd2 27879 scutbdaylt 27881 madebdaylemlrcut 27955 cofcut1 27972 cofcutr 27976 dfn0s2 28354 shintcli 31361 shsval2i 31419 ococin 31440 chsupsn 31445 fldgensdrg 33281 fldgenssv 33282 fldgenssp 33285 insiga 34101 ldsysgenld 34124 ldgenpisyslem2 34128 mclsssvlem 35530 mclsax 35537 mclsind 35538 untint 35674 dfon2lem8 35754 dfon2lem9 35755 clsint2 36295 topmeet 36330 topjoin 36331 heibor1lem 37769 ismrcd1 42654 mzpincl 42690 mzpf 42692 mzpindd 42702 rgspnmin 43128 onintunirab 43188 oninfint 43197 clublem 43572 dftrcl3 43682 brtrclfv2 43689 dfrtrcl3 43695 intsaluni 46250 intsal 46251 salgenss 46257 salgencntex 46264 intubeu 48656 |
Copyright terms: Public domain | W3C validator |