Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4885 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
3 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | eleq2 2827 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 345 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 5 | spcgv 3535 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
8 | 2, 7 | syl5bi 241 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
9 | 8 | ssrdv 3927 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 |
This theorem is referenced by: intminss 4905 intmin3 4907 intab 4909 int0el 4910 trintss 5208 intex 5261 oneqmini 6317 sorpssint 7586 onint 7640 onssmin 7642 onnmin 7648 nnawordex 8468 dffi2 9182 inficl 9184 dffi3 9190 tcmin 9499 tc2 9500 rankr1ai 9556 rankuni2b 9611 tcrank 9642 harval2 9755 cfflb 10015 fin23lem20 10093 fin23lem38 10105 isf32lem2 10110 intwun 10491 inttsk 10530 intgru 10570 dfnn2 11986 dfuzi 12411 trclubi 14707 trclubgi 14708 trclub 14709 trclubg 14710 cotrtrclfv 14723 trclun 14725 dfrtrcl2 14773 mremre 17313 isacs1i 17366 mrelatglb 18278 cycsubg 18827 efgrelexlemb 19356 efgcpbllemb 19361 frgpuplem 19378 primefld 20073 cssmre 20898 toponmre 22244 1stcfb 22596 ptcnplem 22772 fbssfi 22988 uffix 23072 ufildom1 23077 alexsublem 23195 alexsubALTlem4 23201 tmdgsum2 23247 bcth3 24495 limciun 25058 aalioulem3 25494 shintcli 29691 shsval2i 29749 ococin 29770 chsupsn 29775 insiga 32105 ldsysgenld 32128 ldgenpisyslem2 32132 mclsssvlem 33524 mclsax 33531 mclsind 33532 untint 33653 dfon2lem8 33766 dfon2lem9 33767 sltval2 33859 sltres 33865 nocvxminlem 33972 eqscut2 34000 scutun12 34004 scutbdaybnd 34009 scutbdaybnd2 34010 scutbdaylt 34012 madebdaylemlrcut 34079 cofcut1 34090 cofcutr 34092 clsint2 34518 topmeet 34553 topjoin 34554 heibor1lem 35967 ismrcd1 40520 mzpincl 40556 mzpf 40558 mzpindd 40568 rgspnmin 40996 clublem 41218 dftrcl3 41328 brtrclfv2 41335 dfrtrcl3 41341 intsaluni 43868 intsal 43869 salgenss 43875 salgencntex 43882 intubeu 46270 |
Copyright terms: Public domain | W3C validator |