| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4903 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2819 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2820 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3551 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3940 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-int 4898 |
| This theorem is referenced by: intminss 4924 intmin3 4926 intab 4928 int0el 4929 trintss 5216 intex 5282 intidg 5398 oneqmini 6359 sorpssint 7666 onint 7723 onssmin 7725 onnmin 7731 nnawordex 8552 cofon1 8587 cofonr 8589 dffi2 9307 inficl 9309 dffi3 9315 tcmin 9631 tc2 9632 rankr1ai 9688 rankuni2b 9743 tcrank 9774 harval2 9887 cfflb 10147 fin23lem20 10225 fin23lem38 10237 isf32lem2 10242 intwun 10623 inttsk 10662 intgru 10702 dfnn2 12135 dfuzi 12561 trclubi 14900 trclubgi 14901 trclub 14902 trclubg 14903 cotrtrclfv 14916 trclun 14918 dfrtrcl2 14966 mremre 17503 isacs1i 17560 mrelatglb 18463 cycsubg 19118 efgrelexlemb 19660 efgcpbllemb 19665 frgpuplem 19682 rgspnmin 20528 primefld 20718 cssmre 21628 toponmre 23006 1stcfb 23358 ptcnplem 23534 fbssfi 23750 uffix 23834 ufildom1 23839 alexsublem 23957 alexsubALTlem4 23963 tmdgsum2 24009 bcth3 25256 limciun 25820 aalioulem3 26267 sltval2 27593 sltres 27599 nocvxminlem 27715 eqscut2 27745 scutun12 27749 scutbdaybnd 27754 scutbdaybnd2 27755 scutbdaylt 27757 madebdaylemlrcut 27842 cofcut1 27862 cofcutr 27866 dfn0s2 28258 shintcli 31304 shsval2i 31362 ococin 31383 chsupsn 31388 elrgspnlem4 33207 fldgensdrg 33275 fldgenssv 33276 fldgenssp 33279 insiga 34145 ldsysgenld 34168 ldgenpisyslem2 34172 mclsssvlem 35594 mclsax 35601 mclsind 35602 untint 35744 dfon2lem8 35823 dfon2lem9 35824 clsint2 36362 topmeet 36397 topjoin 36398 heibor1lem 37848 ismrcd1 42730 mzpincl 42766 mzpf 42768 mzpindd 42778 onintunirab 43259 oninfint 43268 clublem 43642 dftrcl3 43752 brtrclfv2 43759 dfrtrcl3 43765 intsaluni 46366 intsal 46367 salgenss 46373 salgencntex 46380 intubeu 49014 |
| Copyright terms: Public domain | W3C validator |