| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4928 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2822 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2823 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3575 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3964 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: intminss 4950 intmin3 4952 intab 4954 int0el 4955 trintss 5248 intex 5314 intidg 5432 oneqmini 6405 sorpssint 7727 onint 7784 onssmin 7786 onnmin 7792 nnawordex 8649 cofon1 8684 cofonr 8686 dffi2 9435 inficl 9437 dffi3 9443 tcmin 9755 tc2 9756 rankr1ai 9812 rankuni2b 9867 tcrank 9898 harval2 10011 cfflb 10273 fin23lem20 10351 fin23lem38 10363 isf32lem2 10368 intwun 10749 inttsk 10788 intgru 10828 dfnn2 12253 dfuzi 12684 trclubi 15015 trclubgi 15016 trclub 15017 trclubg 15018 cotrtrclfv 15031 trclun 15033 dfrtrcl2 15081 mremre 17616 isacs1i 17669 mrelatglb 18570 cycsubg 19191 efgrelexlemb 19731 efgcpbllemb 19736 frgpuplem 19753 rgspnmin 20575 primefld 20765 cssmre 21653 toponmre 23031 1stcfb 23383 ptcnplem 23559 fbssfi 23775 uffix 23859 ufildom1 23864 alexsublem 23982 alexsubALTlem4 23988 tmdgsum2 24034 bcth3 25283 limciun 25847 aalioulem3 26294 sltval2 27620 sltres 27626 nocvxminlem 27741 eqscut2 27770 scutun12 27774 scutbdaybnd 27779 scutbdaybnd2 27780 scutbdaylt 27782 madebdaylemlrcut 27862 cofcut1 27880 cofcutr 27884 dfn0s2 28276 shintcli 31310 shsval2i 31368 ococin 31389 chsupsn 31394 elrgspnlem4 33240 fldgensdrg 33308 fldgenssv 33309 fldgenssp 33312 insiga 34168 ldsysgenld 34191 ldgenpisyslem2 34195 mclsssvlem 35584 mclsax 35591 mclsind 35592 untint 35729 dfon2lem8 35808 dfon2lem9 35809 clsint2 36347 topmeet 36382 topjoin 36383 heibor1lem 37833 ismrcd1 42721 mzpincl 42757 mzpf 42759 mzpindd 42769 onintunirab 43251 oninfint 43260 clublem 43634 dftrcl3 43744 brtrclfv2 43751 dfrtrcl3 43757 intsaluni 46358 intsal 46359 salgenss 46365 salgencntex 46372 intubeu 48958 |
| Copyright terms: Public domain | W3C validator |