| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4916 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2816 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2817 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3562 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3952 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-int 4911 |
| This theorem is referenced by: intminss 4938 intmin3 4940 intab 4942 int0el 4943 trintss 5233 intex 5299 intidg 5417 oneqmini 6385 sorpssint 7709 onint 7766 onssmin 7768 onnmin 7774 nnawordex 8601 cofon1 8636 cofonr 8638 dffi2 9374 inficl 9376 dffi3 9382 tcmin 9694 tc2 9695 rankr1ai 9751 rankuni2b 9806 tcrank 9837 harval2 9950 cfflb 10212 fin23lem20 10290 fin23lem38 10302 isf32lem2 10307 intwun 10688 inttsk 10727 intgru 10767 dfnn2 12199 dfuzi 12625 trclubi 14962 trclubgi 14963 trclub 14964 trclubg 14965 cotrtrclfv 14978 trclun 14980 dfrtrcl2 15028 mremre 17565 isacs1i 17618 mrelatglb 18519 cycsubg 19140 efgrelexlemb 19680 efgcpbllemb 19685 frgpuplem 19702 rgspnmin 20524 primefld 20714 cssmre 21602 toponmre 22980 1stcfb 23332 ptcnplem 23508 fbssfi 23724 uffix 23808 ufildom1 23813 alexsublem 23931 alexsubALTlem4 23937 tmdgsum2 23983 bcth3 25231 limciun 25795 aalioulem3 26242 sltval2 27568 sltres 27574 nocvxminlem 27689 eqscut2 27718 scutun12 27722 scutbdaybnd 27727 scutbdaybnd2 27728 scutbdaylt 27730 madebdaylemlrcut 27810 cofcut1 27828 cofcutr 27832 dfn0s2 28224 shintcli 31258 shsval2i 31316 ococin 31337 chsupsn 31342 elrgspnlem4 33196 fldgensdrg 33264 fldgenssv 33265 fldgenssp 33268 insiga 34127 ldsysgenld 34150 ldgenpisyslem2 34154 mclsssvlem 35549 mclsax 35556 mclsind 35557 untint 35699 dfon2lem8 35778 dfon2lem9 35779 clsint2 36317 topmeet 36352 topjoin 36353 heibor1lem 37803 ismrcd1 42686 mzpincl 42722 mzpf 42724 mzpindd 42734 onintunirab 43216 oninfint 43225 clublem 43599 dftrcl3 43709 brtrclfv2 43716 dfrtrcl3 43722 intsaluni 46327 intsal 46328 salgenss 46334 salgencntex 46341 intubeu 48972 |
| Copyright terms: Public domain | W3C validator |