![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4788 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
3 | eleq1 2870 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | eleq2 2871 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 346 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 5 | spcgv 3538 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
8 | 2, 7 | syl5bi 243 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
9 | 8 | ssrdv 3895 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1520 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ∩ cint 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-in 3866 df-ss 3874 df-int 4783 |
This theorem is referenced by: intminss 4808 intmin3 4810 intab 4812 int0el 4813 trintss 5080 intex 5131 oneqmini 6117 sorpssint 7317 onint 7366 onssmin 7368 onnmin 7374 nnawordex 8113 dffi2 8733 inficl 8735 dffi3 8741 tcmin 9029 tc2 9030 rankr1ai 9073 rankuni2b 9128 tcrank 9159 harval2 9272 cfflb 9527 fin23lem20 9605 fin23lem38 9617 isf32lem2 9622 intwun 10003 inttsk 10042 intgru 10082 dfnn2 11499 dfuzi 11922 trclubi 14190 trclubgi 14191 trclub 14192 trclubg 14193 cotrtrclfv 14206 trclun 14208 dfrtrcl2 14255 mremre 16704 isacs1i 16757 mrelatglb 17623 cycsubg 18061 efgrelexlemb 18603 efgcpbllemb 18608 frgpuplem 18625 primefld 19274 cssmre 20519 toponmre 21385 1stcfb 21737 ptcnplem 21913 fbssfi 22129 uffix 22213 ufildom1 22218 alexsublem 22336 alexsubALTlem4 22342 tmdgsum2 22388 bcth3 23617 limciun 24175 aalioulem3 24606 shintcli 28797 shsval2i 28855 ococin 28876 chsupsn 28881 insiga 31013 ldsysgenld 31036 ldgenpisyslem2 31040 mclsssvlem 32417 mclsax 32424 mclsind 32425 untint 32546 dfon2lem8 32643 dfon2lem9 32644 sltval2 32772 sltres 32778 nocvxminlem 32856 scutun12 32880 scutbdaybnd 32884 scutbdaylt 32885 clsint2 33286 topmeet 33321 topjoin 33322 heibor1lem 34619 ismrcd1 38780 mzpincl 38816 mzpf 38818 mzpindd 38828 rgspnmin 39256 clublem 39455 dftrcl3 39550 brtrclfv2 39557 dfrtrcl3 39563 intsaluni 42154 intsal 42155 salgenss 42161 salgencntex 42168 |
Copyright terms: Public domain | W3C validator |