| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4919 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2817 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2818 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3565 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3955 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-int 4914 |
| This theorem is referenced by: intminss 4941 intmin3 4943 intab 4945 int0el 4946 trintss 5236 intex 5302 intidg 5420 oneqmini 6388 sorpssint 7712 onint 7769 onssmin 7771 onnmin 7777 nnawordex 8604 cofon1 8639 cofonr 8641 dffi2 9381 inficl 9383 dffi3 9389 tcmin 9701 tc2 9702 rankr1ai 9758 rankuni2b 9813 tcrank 9844 harval2 9957 cfflb 10219 fin23lem20 10297 fin23lem38 10309 isf32lem2 10314 intwun 10695 inttsk 10734 intgru 10774 dfnn2 12206 dfuzi 12632 trclubi 14969 trclubgi 14970 trclub 14971 trclubg 14972 cotrtrclfv 14985 trclun 14987 dfrtrcl2 15035 mremre 17572 isacs1i 17625 mrelatglb 18526 cycsubg 19147 efgrelexlemb 19687 efgcpbllemb 19692 frgpuplem 19709 rgspnmin 20531 primefld 20721 cssmre 21609 toponmre 22987 1stcfb 23339 ptcnplem 23515 fbssfi 23731 uffix 23815 ufildom1 23820 alexsublem 23938 alexsubALTlem4 23944 tmdgsum2 23990 bcth3 25238 limciun 25802 aalioulem3 26249 sltval2 27575 sltres 27581 nocvxminlem 27696 eqscut2 27725 scutun12 27729 scutbdaybnd 27734 scutbdaybnd2 27735 scutbdaylt 27737 madebdaylemlrcut 27817 cofcut1 27835 cofcutr 27839 dfn0s2 28231 shintcli 31265 shsval2i 31323 ococin 31344 chsupsn 31349 elrgspnlem4 33203 fldgensdrg 33271 fldgenssv 33272 fldgenssp 33275 insiga 34134 ldsysgenld 34157 ldgenpisyslem2 34161 mclsssvlem 35556 mclsax 35563 mclsind 35564 untint 35706 dfon2lem8 35785 dfon2lem9 35786 clsint2 36324 topmeet 36359 topjoin 36360 heibor1lem 37810 ismrcd1 42693 mzpincl 42729 mzpf 42731 mzpindd 42741 onintunirab 43223 oninfint 43232 clublem 43606 dftrcl3 43716 brtrclfv2 43723 dfrtrcl3 43729 intsaluni 46334 intsal 46335 salgenss 46341 salgencntex 46348 intubeu 48976 |
| Copyright terms: Public domain | W3C validator |