| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intss1 | Structured version Visualization version GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
| Ref | Expression |
|---|---|
| intss1 | ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4928 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 3 | eleq1 2822 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | eleq2 2823 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) ↔ (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 5 | spcgv 3575 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴)) |
| 8 | 2, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ssrdv 3964 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: intminss 4950 intmin3 4952 intab 4954 int0el 4955 trintss 5248 intex 5314 intidg 5432 oneqmini 6405 sorpssint 7725 onint 7782 onssmin 7784 onnmin 7790 nnawordex 8647 cofon1 8682 cofonr 8684 dffi2 9433 inficl 9435 dffi3 9441 tcmin 9753 tc2 9754 rankr1ai 9810 rankuni2b 9865 tcrank 9896 harval2 10009 cfflb 10271 fin23lem20 10349 fin23lem38 10361 isf32lem2 10366 intwun 10747 inttsk 10786 intgru 10826 dfnn2 12251 dfuzi 12682 trclubi 15013 trclubgi 15014 trclub 15015 trclubg 15016 cotrtrclfv 15029 trclun 15031 dfrtrcl2 15079 mremre 17614 isacs1i 17667 mrelatglb 18568 cycsubg 19189 efgrelexlemb 19729 efgcpbllemb 19734 frgpuplem 19751 rgspnmin 20573 primefld 20763 cssmre 21651 toponmre 23029 1stcfb 23381 ptcnplem 23557 fbssfi 23773 uffix 23857 ufildom1 23862 alexsublem 23980 alexsubALTlem4 23986 tmdgsum2 24032 bcth3 25281 limciun 25845 aalioulem3 26292 sltval2 27618 sltres 27624 nocvxminlem 27739 eqscut2 27768 scutun12 27772 scutbdaybnd 27777 scutbdaybnd2 27778 scutbdaylt 27780 madebdaylemlrcut 27854 cofcut1 27871 cofcutr 27875 dfn0s2 28253 shintcli 31256 shsval2i 31314 ococin 31335 chsupsn 31340 elrgspnlem4 33186 fldgensdrg 33254 fldgenssv 33255 fldgenssp 33258 insiga 34114 ldsysgenld 34137 ldgenpisyslem2 34141 mclsssvlem 35530 mclsax 35537 mclsind 35538 untint 35675 dfon2lem8 35754 dfon2lem9 35755 clsint2 36293 topmeet 36328 topjoin 36329 heibor1lem 37779 ismrcd1 42668 mzpincl 42704 mzpf 42706 mzpindd 42716 onintunirab 43198 oninfint 43207 clublem 43581 dftrcl3 43691 brtrclfv2 43698 dfrtrcl3 43704 intsaluni 46306 intsal 46307 salgenss 46313 salgencntex 46320 intubeu 48906 |
| Copyright terms: Public domain | W3C validator |