MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intabs Structured version   Visualization version   GIF version

Theorem intabs 5235
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intabs.1 (𝑥 = 𝑦 → (𝜑𝜓))
intabs.2 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
intabs.3 ( {𝑦𝜓} ⊆ 𝐴𝜒)
Assertion
Ref Expression
intabs {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem intabs
StepHypRef Expression
1 sseq1 3926 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝑥𝐴 {𝑦𝜓} ⊆ 𝐴))
2 intabs.2 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
31, 2anbi12d 634 . . . . 5 (𝑥 = {𝑦𝜓} → ((𝑥𝐴𝜑) ↔ ( {𝑦𝜓} ⊆ 𝐴𝜒)))
4 intabs.3 . . . . 5 ( {𝑦𝜓} ⊆ 𝐴𝜒)
53, 4intmin3 4887 . . . 4 ( {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
6 intnex 5231 . . . . 5 {𝑦𝜓} ∈ V ↔ {𝑦𝜓} = V)
7 ssv 3925 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V
8 sseq2 3927 . . . . . 6 ( {𝑦𝜓} = V → ( {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V))
97, 8mpbiri 261 . . . . 5 ( {𝑦𝜓} = V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
106, 9sylbi 220 . . . 4 {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
115, 10pm2.61i 185 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓}
12 intabs.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1312cbvabv 2811 . . . 4 {𝑥𝜑} = {𝑦𝜓}
1413inteqi 4863 . . 3 {𝑥𝜑} = {𝑦𝜓}
1511, 14sseqtrri 3938 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
16 simpr 488 . . . 4 ((𝑥𝐴𝜑) → 𝜑)
1716ss2abi 3980 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
18 intss 4880 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑} → {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
1917, 18ax-mp 5 . 2 {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)}
2015, 19eqssi 3917 1 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {cab 2714  Vcvv 3408  wss 3866   cint 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238  df-int 4860
This theorem is referenced by:  dfnn3  11844
  Copyright terms: Public domain W3C validator