Proof of Theorem intabs
Step | Hyp | Ref
| Expression |
1 | | sseq1 3942 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑦 ∣ 𝜓} → (𝑥 ⊆ 𝐴 ↔ ∩ {𝑦 ∣ 𝜓} ⊆ 𝐴)) |
2 | | intabs.2 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑦 ∣ 𝜓} → (𝜑 ↔ 𝜒)) |
3 | 1, 2 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = ∩
{𝑦 ∣ 𝜓} → ((𝑥 ⊆ 𝐴 ∧ 𝜑) ↔ (∩
{𝑦 ∣ 𝜓} ⊆ 𝐴 ∧ 𝜒))) |
4 | | intabs.3 |
. . . . 5
⊢ (∩ {𝑦
∣ 𝜓} ⊆ 𝐴 ∧ 𝜒) |
5 | 3, 4 | intmin3 4904 |
. . . 4
⊢ (∩ {𝑦
∣ 𝜓} ∈ V →
∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑦 ∣ 𝜓}) |
6 | | intnex 5257 |
. . . . 5
⊢ (¬
∩ {𝑦 ∣ 𝜓} ∈ V ↔ ∩ {𝑦
∣ 𝜓} =
V) |
7 | | ssv 3941 |
. . . . . 6
⊢ ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ V |
8 | | sseq2 3943 |
. . . . . 6
⊢ (∩ {𝑦
∣ 𝜓} = V → (∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑦 ∣ 𝜓} ↔ ∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ V)) |
9 | 7, 8 | mpbiri 257 |
. . . . 5
⊢ (∩ {𝑦
∣ 𝜓} = V → ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑦 ∣ 𝜓}) |
10 | 6, 9 | sylbi 216 |
. . . 4
⊢ (¬
∩ {𝑦 ∣ 𝜓} ∈ V → ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑦 ∣ 𝜓}) |
11 | 5, 10 | pm2.61i 182 |
. . 3
⊢ ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑦 ∣ 𝜓} |
12 | | intabs.1 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
13 | 12 | cbvabv 2812 |
. . . 4
⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
14 | 13 | inteqi 4880 |
. . 3
⊢ ∩ {𝑥
∣ 𝜑} = ∩ {𝑦
∣ 𝜓} |
15 | 11, 14 | sseqtrri 3954 |
. 2
⊢ ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ ∩
{𝑥 ∣ 𝜑} |
16 | | simpr 484 |
. . . 4
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝜑) |
17 | 16 | ss2abi 3996 |
. . 3
⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} |
18 | | intss 4897 |
. . 3
⊢ ({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ ∩
{𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)}) |
19 | 17, 18 | ax-mp 5 |
. 2
⊢ ∩ {𝑥
∣ 𝜑} ⊆ ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} |
20 | 15, 19 | eqssi 3933 |
1
⊢ ∩ {𝑥
∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑} |