MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intabs Structured version   Visualization version   GIF version

Theorem intabs 5338
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intabs.1 (𝑥 = 𝑦 → (𝜑𝜓))
intabs.2 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
intabs.3 ( {𝑦𝜓} ⊆ 𝐴𝜒)
Assertion
Ref Expression
intabs {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem intabs
StepHypRef Expression
1 sseq1 4003 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝑥𝐴 {𝑦𝜓} ⊆ 𝐴))
2 intabs.2 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
31, 2anbi12d 630 . . . . 5 (𝑥 = {𝑦𝜓} → ((𝑥𝐴𝜑) ↔ ( {𝑦𝜓} ⊆ 𝐴𝜒)))
4 intabs.3 . . . . 5 ( {𝑦𝜓} ⊆ 𝐴𝜒)
53, 4intmin3 4974 . . . 4 ( {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
6 intnex 5334 . . . . 5 {𝑦𝜓} ∈ V ↔ {𝑦𝜓} = V)
7 ssv 4002 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V
8 sseq2 4004 . . . . . 6 ( {𝑦𝜓} = V → ( {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V))
97, 8mpbiri 258 . . . . 5 ( {𝑦𝜓} = V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
106, 9sylbi 216 . . . 4 {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
115, 10pm2.61i 182 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓}
12 intabs.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1312cbvabv 2800 . . . 4 {𝑥𝜑} = {𝑦𝜓}
1413inteqi 4948 . . 3 {𝑥𝜑} = {𝑦𝜓}
1511, 14sseqtrri 4015 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
16 simpr 484 . . . 4 ((𝑥𝐴𝜑) → 𝜑)
1716ss2abi 4059 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
18 intss 4967 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑} → {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
1917, 18ax-mp 5 . 2 {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)}
2015, 19eqssi 3994 1 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2704  Vcvv 3469  wss 3944   cint 4944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-in 3951  df-ss 3961  df-nul 4319  df-int 4945
This theorem is referenced by:  dfnn3  12248
  Copyright terms: Public domain W3C validator