| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intmin2 | Structured version Visualization version GIF version | ||
| Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| intmin2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabab 3468 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
| 2 | 1 | inteqi 4901 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
| 3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | intmin 4918 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| 6 | 2, 5 | eqtr3i 2758 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cab 2711 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-int 4898 |
| This theorem is referenced by: dfid7 43729 |
| Copyright terms: Public domain | W3C validator |