MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin2 Structured version   Visualization version   GIF version

Theorem intmin2 4906
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1 𝐴 ∈ V
Assertion
Ref Expression
intmin2 {𝑥𝐴𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 3460 . . 3 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
21inteqi 4883 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
3 intmin2.1 . . 3 𝐴 ∈ V
4 intmin 4899 . . 3 (𝐴 ∈ V → {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴)
53, 4ax-mp 5 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴
62, 5eqtr3i 2768 1 {𝑥𝐴𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  Vcvv 3432  wss 3887   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-int 4880
This theorem is referenced by:  dfid7  41220
  Copyright terms: Public domain W3C validator