![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin2 | Structured version Visualization version GIF version |
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
intmin2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabab 3501 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
2 | 1 | inteqi 4953 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | intmin 4971 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
6 | 2, 5 | eqtr3i 2760 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 {cab 2707 {crab 3430 Vcvv 3472 ⊆ wss 3947 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-int 4950 |
This theorem is referenced by: dfid7 42665 |
Copyright terms: Public domain | W3C validator |