![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin2 | Structured version Visualization version GIF version |
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
intmin2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabab 3520 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
2 | 1 | inteqi 4974 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | intmin 4992 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
6 | 2, 5 | eqtr3i 2770 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-int 4971 |
This theorem is referenced by: dfid7 43574 |
Copyright terms: Public domain | W3C validator |