Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscrngo | Structured version Visualization version GIF version |
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
iscrngo | ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-crngo 36079 | . 2 ⊢ CRingOps = (RingOps ∩ Com2) | |
2 | 1 | elin2 4127 | 1 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 RingOpscrngo 35979 Com2ccm2 36074 CRingOpsccring 36078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-crngo 36079 |
This theorem is referenced by: iscrngo2 36082 iscringd 36083 crngorngo 36085 fldcrng 36089 isfld2 36090 isdmn2 36140 |
Copyright terms: Public domain | W3C validator |