![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscrngo | Structured version Visualization version GIF version |
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
iscrngo | ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-crngo 37981 | . 2 ⊢ CRingOps = (RingOps ∩ Com2) | |
2 | 1 | elin2 4213 | 1 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 RingOpscrngo 37881 Com2ccm2 37976 CRingOpsccring 37980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-crngo 37981 |
This theorem is referenced by: iscrngo2 37984 iscringd 37985 crngorngo 37987 fldcrngo 37991 isfld2 37992 isdmn2 38042 |
Copyright terms: Public domain | W3C validator |