Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo Structured version   Visualization version   GIF version

Theorem iscrngo 37997
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
iscrngo (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))

Proof of Theorem iscrngo
StepHypRef Expression
1 df-crngo 37995 . 2 CRingOps = (RingOps ∩ Com2)
21elin2 4169 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  RingOpscrngo 37895  Com2ccm2 37990  CRingOpsccring 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-crngo 37995
This theorem is referenced by:  iscrngo2  37998  iscringd  37999  crngorngo  38001  fldcrngo  38005  isfld2  38006  isdmn2  38056
  Copyright terms: Public domain W3C validator