![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscrngo | Structured version Visualization version GIF version |
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
iscrngo | ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-crngo 37954 | . 2 ⊢ CRingOps = (RingOps ∩ Com2) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 RingOpscrngo 37854 Com2ccm2 37949 CRingOpsccring 37953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-crngo 37954 |
This theorem is referenced by: iscrngo2 37957 iscringd 37958 crngorngo 37960 fldcrngo 37964 isfld2 37965 isdmn2 38015 |
Copyright terms: Public domain | W3C validator |