Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo Structured version   Visualization version   GIF version

Theorem iscrngo 38035
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
iscrngo (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))

Proof of Theorem iscrngo
StepHypRef Expression
1 df-crngo 38033 . 2 CRingOps = (RingOps ∩ Com2)
21elin2 4150 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  RingOpscrngo 37933  Com2ccm2 38028  CRingOpsccring 38032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3904  df-crngo 38033
This theorem is referenced by:  iscrngo2  38036  iscringd  38037  crngorngo  38039  fldcrngo  38043  isfld2  38044  isdmn2  38094
  Copyright terms: Public domain W3C validator