Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   GIF version

Theorem iscrngo2 35269
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1 𝐺 = (1st𝑅)
iscring2.2 𝐻 = (2nd𝑅)
iscring2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
iscrngo2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 35268 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
2 relrngo 35168 . . . . 5 Rel RingOps
3 1st2nd 7732 . . . . 5 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 688 . . . 4 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 eleq1 2900 . . . . 5 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2))
6 iscring2.3 . . . . . . . 8 𝑋 = ran 𝐺
7 iscring2.1 . . . . . . . . 9 𝐺 = (1st𝑅)
87rneqi 5802 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
96, 8eqtri 2844 . . . . . . 7 𝑋 = ran (1st𝑅)
109raleqi 3414 . . . . . 6 (∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
11 iscring2.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
1211oveqi 7163 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥(2nd𝑅)𝑦)
1311oveqi 7163 . . . . . . . . 9 (𝑦𝐻𝑥) = (𝑦(2nd𝑅)𝑥)
1412, 13eqeq12i 2836 . . . . . . . 8 ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
159, 14raleqbii 3234 . . . . . . 7 (∀𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
1615ralbii 3165 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
17 fvex 6678 . . . . . . 7 (1st𝑅) ∈ V
18 fvex 6678 . . . . . . 7 (2nd𝑅) ∈ V
19 iscom2 35267 . . . . . . 7 (((1st𝑅) ∈ V ∧ (2nd𝑅) ∈ V) → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥)))
2017, 18, 19mp2an 690 . . . . . 6 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
2110, 16, 203bitr4ri 306 . . . . 5 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
225, 21syl6bb 289 . . . 4 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
234, 22syl 17 . . 3 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
2423pm5.32i 577 . 2 ((𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
251, 24bitri 277 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  cop 4567  ran crn 5551  Rel wrel 5555  cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  RingOpscrngo 35166  Com2ccm2 35261  CRingOpsccring 35265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-1st 7683  df-2nd 7684  df-rngo 35167  df-com2 35262  df-crngo 35266
This theorem is referenced by:  crngocom  35273  crngohomfo  35278
  Copyright terms: Public domain W3C validator