Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   GIF version

Theorem iscrngo2 36459
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1 𝐺 = (1st𝑅)
iscring2.2 𝐻 = (2nd𝑅)
iscring2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
iscrngo2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 36458 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
2 relrngo 36358 . . . . 5 Rel RingOps
3 1st2nd 7972 . . . . 5 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 689 . . . 4 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 eleq1 2826 . . . . 5 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2))
6 iscring2.3 . . . . . . . 8 𝑋 = ran 𝐺
7 iscring2.1 . . . . . . . . 9 𝐺 = (1st𝑅)
87rneqi 5893 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
96, 8eqtri 2765 . . . . . . 7 𝑋 = ran (1st𝑅)
109raleqi 3312 . . . . . 6 (∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
11 iscring2.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
1211oveqi 7371 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥(2nd𝑅)𝑦)
1311oveqi 7371 . . . . . . . . 9 (𝑦𝐻𝑥) = (𝑦(2nd𝑅)𝑥)
1412, 13eqeq12i 2755 . . . . . . . 8 ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
159, 14raleqbii 3316 . . . . . . 7 (∀𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
1615ralbii 3097 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
17 fvex 6856 . . . . . . 7 (1st𝑅) ∈ V
18 fvex 6856 . . . . . . 7 (2nd𝑅) ∈ V
19 iscom2 36457 . . . . . . 7 (((1st𝑅) ∈ V ∧ (2nd𝑅) ∈ V) → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥)))
2017, 18, 19mp2an 691 . . . . . 6 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
2110, 16, 203bitr4ri 304 . . . . 5 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
225, 21bitrdi 287 . . . 4 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
234, 22syl 17 . . 3 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
2423pm5.32i 576 . 2 ((𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
251, 24bitri 275 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3446  cop 4593  ran crn 5635  Rel wrel 5639  cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  RingOpscrngo 36356  Com2ccm2 36451  CRingOpsccring 36455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-1st 7922  df-2nd 7923  df-rngo 36357  df-com2 36452  df-crngo 36456
This theorem is referenced by:  crngocom  36463  crngohomfo  36468
  Copyright terms: Public domain W3C validator