Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   GIF version

Theorem iscrngo2 36155
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1 𝐺 = (1st𝑅)
iscring2.2 𝐻 = (2nd𝑅)
iscring2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
iscrngo2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 36154 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
2 relrngo 36054 . . . . 5 Rel RingOps
3 1st2nd 7880 . . . . 5 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 687 . . . 4 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 eleq1 2826 . . . . 5 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2))
6 iscring2.3 . . . . . . . 8 𝑋 = ran 𝐺
7 iscring2.1 . . . . . . . . 9 𝐺 = (1st𝑅)
87rneqi 5846 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
96, 8eqtri 2766 . . . . . . 7 𝑋 = ran (1st𝑅)
109raleqi 3346 . . . . . 6 (∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
11 iscring2.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
1211oveqi 7288 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥(2nd𝑅)𝑦)
1311oveqi 7288 . . . . . . . . 9 (𝑦𝐻𝑥) = (𝑦(2nd𝑅)𝑥)
1412, 13eqeq12i 2756 . . . . . . . 8 ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
159, 14raleqbii 3163 . . . . . . 7 (∀𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
1615ralbii 3092 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
17 fvex 6787 . . . . . . 7 (1st𝑅) ∈ V
18 fvex 6787 . . . . . . 7 (2nd𝑅) ∈ V
19 iscom2 36153 . . . . . . 7 (((1st𝑅) ∈ V ∧ (2nd𝑅) ∈ V) → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥)))
2017, 18, 19mp2an 689 . . . . . 6 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
2110, 16, 203bitr4ri 304 . . . . 5 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
225, 21bitrdi 287 . . . 4 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
234, 22syl 17 . . 3 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
2423pm5.32i 575 . 2 ((𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
251, 24bitri 274 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cop 4567  ran crn 5590  Rel wrel 5594  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  RingOpscrngo 36052  Com2ccm2 36147  CRingOpsccring 36151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-rngo 36053  df-com2 36148  df-crngo 36152
This theorem is referenced by:  crngocom  36159  crngohomfo  36164
  Copyright terms: Public domain W3C validator