Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   GIF version

Theorem iscrngo2 38036
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1 𝐺 = (1st𝑅)
iscring2.2 𝐻 = (2nd𝑅)
iscring2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
iscrngo2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 38035 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
2 relrngo 37935 . . . . 5 Rel RingOps
3 1st2nd 7971 . . . . 5 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 690 . . . 4 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 eleq1 2819 . . . . 5 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2))
6 iscring2.3 . . . . . . . 8 𝑋 = ran 𝐺
7 iscring2.1 . . . . . . . . 9 𝐺 = (1st𝑅)
87rneqi 5877 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
96, 8eqtri 2754 . . . . . . 7 𝑋 = ran (1st𝑅)
109raleqi 3290 . . . . . 6 (∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
11 iscring2.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
1211oveqi 7359 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥(2nd𝑅)𝑦)
1311oveqi 7359 . . . . . . . . 9 (𝑦𝐻𝑥) = (𝑦(2nd𝑅)𝑥)
1412, 13eqeq12i 2749 . . . . . . . 8 ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
159, 14raleqbii 3310 . . . . . . 7 (∀𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
1615ralbii 3078 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
17 fvex 6835 . . . . . . 7 (1st𝑅) ∈ V
18 fvex 6835 . . . . . . 7 (2nd𝑅) ∈ V
19 iscom2 38034 . . . . . . 7 (((1st𝑅) ∈ V ∧ (2nd𝑅) ∈ V) → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥)))
2017, 18, 19mp2an 692 . . . . . 6 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
2110, 16, 203bitr4ri 304 . . . . 5 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
225, 21bitrdi 287 . . . 4 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
234, 22syl 17 . . 3 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
2423pm5.32i 574 . 2 ((𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
251, 24bitri 275 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4582  ran crn 5617  Rel wrel 5621  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  RingOpscrngo 37933  Com2ccm2 38028  CRingOpsccring 38032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-rngo 37934  df-com2 38029  df-crngo 38033
This theorem is referenced by:  crngocom  38040  crngohomfo  38045
  Copyright terms: Public domain W3C validator