Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscom2 Structured version   Visualization version   GIF version

Theorem iscom2 37982
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.)
Assertion
Ref Expression
iscom2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
Distinct variable groups:   𝐺,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem iscom2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-com2 37977 . . . 4 Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}
21a1i 11 . . 3 ((𝐺𝐴𝐻𝐵) → Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})
32eleq2d 2825 . 2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}))
4 rneq 5950 . . . 4 (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺)
54raleqdv 3324 . . . 4 (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎)))
64, 5raleqbidv 3344 . . 3 (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎)))
7 oveq 7437 . . . . 5 (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏))
8 oveq 7437 . . . . 5 (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎))
97, 8eqeq12d 2751 . . . 4 (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
1092ralbidv 3219 . . 3 (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
116, 10opelopabg 5548 . 2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
123, 11bitrd 279 1 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637  {copab 5210  ran crn 5690  (class class class)co 7431  Com2ccm2 37976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700  df-iota 6516  df-fv 6571  df-ov 7434  df-com2 37977
This theorem is referenced by:  iscrngo2  37984  iscringd  37985
  Copyright terms: Public domain W3C validator