| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscom2 | Structured version Visualization version GIF version | ||
| Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iscom2 | ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-com2 37981 | . . . 4 ⊢ Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}) |
| 3 | 2 | eleq2d 2815 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ 〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})) |
| 4 | rneq 5908 | . . . 4 ⊢ (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺) | |
| 5 | 4 | raleqdv 3302 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
| 6 | 4, 5 | raleqbidv 3322 | . . 3 ⊢ (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
| 7 | oveq 7400 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏)) | |
| 8 | oveq 7400 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎)) | |
| 9 | 7, 8 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
| 10 | 9 | 2ralbidv 3203 | . . 3 ⊢ (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
| 11 | 6, 10 | opelopabg 5506 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
| 12 | 3, 11 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 〈cop 4603 {copab 5177 ran crn 5647 (class class class)co 7394 Com2ccm2 37980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-cnv 5654 df-dm 5656 df-rn 5657 df-iota 6472 df-fv 6527 df-ov 7397 df-com2 37981 |
| This theorem is referenced by: iscrngo2 37988 iscringd 37989 |
| Copyright terms: Public domain | W3C validator |