Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscom2 | Structured version Visualization version GIF version |
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscom2 | ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-com2 35709 | . . . 4 ⊢ Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}) |
3 | 2 | eleq2d 2838 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ 〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})) |
4 | rneq 5778 | . . . 4 ⊢ (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺) | |
5 | 4 | raleqdv 3330 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
6 | 4, 5 | raleqbidv 3320 | . . 3 ⊢ (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
7 | oveq 7157 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏)) | |
8 | oveq 7157 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎)) | |
9 | 7, 8 | eqeq12d 2775 | . . . 4 ⊢ (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
10 | 9 | 2ralbidv 3129 | . . 3 ⊢ (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
11 | 6, 10 | opelopabg 5396 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
12 | 3, 11 | bitrd 282 | 1 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 〈cop 4529 {copab 5095 ran crn 5526 (class class class)co 7151 Com2ccm2 35708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-cnv 5533 df-dm 5535 df-rn 5536 df-iota 6295 df-fv 6344 df-ov 7154 df-com2 35709 |
This theorem is referenced by: iscrngo2 35716 iscringd 35717 |
Copyright terms: Public domain | W3C validator |