![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscom2 | Structured version Visualization version GIF version |
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscom2 | ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-com2 36853 | . . . 4 ⊢ Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}) |
3 | 2 | eleq2d 2819 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})) |
4 | rneq 5935 | . . . 4 ⊢ (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺) | |
5 | 4 | raleqdv 3325 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
6 | 4, 5 | raleqbidv 3342 | . . 3 ⊢ (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
7 | oveq 7414 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏)) | |
8 | oveq 7414 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎)) | |
9 | 7, 8 | eqeq12d 2748 | . . . 4 ⊢ (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
10 | 9 | 2ralbidv 3218 | . . 3 ⊢ (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
11 | 6, 10 | opelopabg 5538 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
12 | 3, 11 | bitrd 278 | 1 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⟨cop 4634 {copab 5210 ran crn 5677 (class class class)co 7408 Com2ccm2 36852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-iota 6495 df-fv 6551 df-ov 7411 df-com2 36853 |
This theorem is referenced by: iscrngo2 36860 iscringd 36861 |
Copyright terms: Public domain | W3C validator |