![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscom2 | Structured version Visualization version GIF version |
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscom2 | ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-com2 37314 | . . . 4 ⊢ Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → Com2 = {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}) |
3 | 2 | eleq2d 2811 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ 〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})) |
4 | rneq 5925 | . . . 4 ⊢ (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺) | |
5 | 4 | raleqdv 3317 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
6 | 4, 5 | raleqbidv 3334 | . . 3 ⊢ (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎))) |
7 | oveq 7407 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏)) | |
8 | oveq 7407 | . . . . 5 ⊢ (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎)) | |
9 | 7, 8 | eqeq12d 2740 | . . . 4 ⊢ (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
10 | 9 | 2ralbidv 3210 | . . 3 ⊢ (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
11 | 6, 10 | opelopabg 5528 | . 2 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ {〈𝑥, 𝑦〉 ∣ ∀𝑎 ∈ ran 𝑥∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
12 | 3, 11 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 〈cop 4626 {copab 5200 ran crn 5667 (class class class)co 7401 Com2ccm2 37313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-cnv 5674 df-dm 5676 df-rn 5677 df-iota 6485 df-fv 6541 df-ov 7404 df-com2 37314 |
This theorem is referenced by: iscrngo2 37321 iscringd 37322 |
Copyright terms: Public domain | W3C validator |