Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscom2 Structured version   Visualization version   GIF version

Theorem iscom2 37965
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.)
Assertion
Ref Expression
iscom2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
Distinct variable groups:   𝐺,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem iscom2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-com2 37960 . . . 4 Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}
21a1i 11 . . 3 ((𝐺𝐴𝐻𝐵) → Com2 = {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)})
32eleq2d 2820 . 2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)}))
4 rneq 5916 . . . 4 (𝑥 = 𝐺 → ran 𝑥 = ran 𝐺)
54raleqdv 3305 . . . 4 (𝑥 = 𝐺 → (∀𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎)))
64, 5raleqbidv 3325 . . 3 (𝑥 = 𝐺 → (∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎)))
7 oveq 7409 . . . . 5 (𝑦 = 𝐻 → (𝑎𝑦𝑏) = (𝑎𝐻𝑏))
8 oveq 7409 . . . . 5 (𝑦 = 𝐻 → (𝑏𝑦𝑎) = (𝑏𝐻𝑎))
97, 8eqeq12d 2751 . . . 4 (𝑦 = 𝐻 → ((𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ (𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
1092ralbidv 3205 . . 3 (𝑦 = 𝐻 → (∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝑦𝑏) = (𝑏𝑦𝑎) ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
116, 10opelopabg 5513 . 2 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∀𝑎 ∈ ran 𝑥𝑏 ∈ ran 𝑥(𝑎𝑦𝑏) = (𝑏𝑦𝑎)} ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
123, 11bitrd 279 1 ((𝐺𝐴𝐻𝐵) → (⟨𝐺, 𝐻⟩ ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cop 4607  {copab 5181  ran crn 5655  (class class class)co 7403  Com2ccm2 37959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-iota 6483  df-fv 6538  df-ov 7406  df-com2 37960
This theorem is referenced by:  iscrngo2  37967  iscringd  37968
  Copyright terms: Public domain W3C validator