![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvc2 | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc2.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
isnvc2 | β’ (π β NrmVec β (π β NrmMod β§ πΉ β DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvc 24211 | . 2 β’ (π β NrmVec β (π β NrmMod β§ π β LVec)) | |
2 | nlmlmod 24194 | . . . 4 β’ (π β NrmMod β π β LMod) | |
3 | isnvc2.1 | . . . . . 6 β’ πΉ = (Scalarβπ) | |
4 | 3 | islvec 20714 | . . . . 5 β’ (π β LVec β (π β LMod β§ πΉ β DivRing)) |
5 | 4 | baib 536 | . . . 4 β’ (π β LMod β (π β LVec β πΉ β DivRing)) |
6 | 2, 5 | syl 17 | . . 3 β’ (π β NrmMod β (π β LVec β πΉ β DivRing)) |
7 | 6 | pm5.32i 575 | . 2 β’ ((π β NrmMod β§ π β LVec) β (π β NrmMod β§ πΉ β DivRing)) |
8 | 1, 7 | bitri 274 | 1 β’ (π β NrmVec β (π β NrmMod β§ πΉ β DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 Scalarcsca 17199 DivRingcdr 20356 LModclmod 20470 LVecclvec 20712 NrmModcnlm 24088 NrmVeccnvc 24089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-lvec 20713 df-nlm 24094 df-nvc 24095 |
This theorem is referenced by: lssnvc 24218 srabn 24876 |
Copyright terms: Public domain | W3C validator |