MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc2 Structured version   Visualization version   GIF version

Theorem isnvc2 24215
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
isnvc2.1 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
isnvc2 (π‘Š ∈ NrmVec ↔ (π‘Š ∈ NrmMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem isnvc2
StepHypRef Expression
1 isnvc 24211 . 2 (π‘Š ∈ NrmVec ↔ (π‘Š ∈ NrmMod ∧ π‘Š ∈ LVec))
2 nlmlmod 24194 . . . 4 (π‘Š ∈ NrmMod β†’ π‘Š ∈ LMod)
3 isnvc2.1 . . . . . 6 𝐹 = (Scalarβ€˜π‘Š)
43islvec 20714 . . . . 5 (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ 𝐹 ∈ DivRing))
54baib 536 . . . 4 (π‘Š ∈ LMod β†’ (π‘Š ∈ LVec ↔ 𝐹 ∈ DivRing))
62, 5syl 17 . . 3 (π‘Š ∈ NrmMod β†’ (π‘Š ∈ LVec ↔ 𝐹 ∈ DivRing))
76pm5.32i 575 . 2 ((π‘Š ∈ NrmMod ∧ π‘Š ∈ LVec) ↔ (π‘Š ∈ NrmMod ∧ 𝐹 ∈ DivRing))
81, 7bitri 274 1 (π‘Š ∈ NrmVec ↔ (π‘Š ∈ NrmMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  Scalarcsca 17199  DivRingcdr 20356  LModclmod 20470  LVecclvec 20712  NrmModcnlm 24088  NrmVeccnvc 24089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-lvec 20713  df-nlm 24094  df-nvc 24095
This theorem is referenced by:  lssnvc  24218  srabn  24876
  Copyright terms: Public domain W3C validator