![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvc2 | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc2.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isnvc2 | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvc 24737 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
2 | nlmlmod 24720 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
3 | isnvc2.1 | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | islvec 21126 | . . . . 5 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
5 | 4 | baib 535 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
7 | 6 | pm5.32i 574 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
8 | 1, 7 | bitri 275 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 NrmModcnlm 24614 NrmVeccnvc 24615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lvec 21125 df-nlm 24620 df-nvc 24621 |
This theorem is referenced by: lssnvc 24744 srabn 25413 |
Copyright terms: Public domain | W3C validator |