| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvc2 | Structured version Visualization version GIF version | ||
| Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnvc2.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| isnvc2 | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvc 24632 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
| 2 | nlmlmod 24615 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 3 | isnvc2.1 | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | islvec 21060 | . . . . 5 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 5 | 4 | baib 535 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
| 7 | 6 | pm5.32i 574 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 Scalarcsca 17272 DivRingcdr 20687 LModclmod 20815 LVecclvec 21058 NrmModcnlm 24517 NrmVeccnvc 24518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-lvec 21059 df-nlm 24523 df-nvc 24524 |
| This theorem is referenced by: lssnvc 24639 srabn 25310 |
| Copyright terms: Public domain | W3C validator |