Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnvc2 | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc2.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isnvc2 | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvc 23859 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
2 | nlmlmod 23842 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
3 | isnvc2.1 | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | islvec 20366 | . . . . 5 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
5 | 4 | baib 536 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing)) |
7 | 6 | pm5.32i 575 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Scalarcsca 16965 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 NrmModcnlm 23736 NrmVeccnvc 23737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-lvec 20365 df-nlm 23742 df-nvc 23743 |
This theorem is referenced by: lssnvc 23866 srabn 24524 |
Copyright terms: Public domain | W3C validator |