MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc2 Structured version   Visualization version   GIF version

Theorem isnvc2 23769
Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
isnvc2.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isnvc2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))

Proof of Theorem isnvc2
StepHypRef Expression
1 isnvc 23765 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
2 nlmlmod 23748 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 isnvc2.1 . . . . . 6 𝐹 = (Scalar‘𝑊)
43islvec 20281 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing))
54baib 535 . . . 4 (𝑊 ∈ LMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing))
62, 5syl 17 . . 3 (𝑊 ∈ NrmMod → (𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing))
76pm5.32i 574 . 2 ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))
81, 7bitri 274 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  Scalarcsca 16891  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279  NrmModcnlm 23642  NrmVeccnvc 23643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-lvec 20280  df-nlm 23648  df-nvc 23649
This theorem is referenced by:  lssnvc  23772  srabn  24429
  Copyright terms: Public domain W3C validator