| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphnvc | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25048 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | cphlvec 25051 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
| 3 | isnvc 24559 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LVecclvec 20985 NrmModcnlm 24444 NrmVeccnvc 24445 ℂPreHilccph 25042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-phl 21511 df-nvc 24451 df-cph 25044 |
| This theorem is referenced by: ishl2 25246 csschl 25252 |
| Copyright terms: Public domain | W3C validator |