| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphnvc | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25161 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | cphlvec 25164 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
| 3 | isnvc 24671 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 LVecclvec 21074 NrmModcnlm 24556 NrmVeccnvc 24557 ℂPreHilccph 25155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fv 6550 df-ov 7417 df-phl 21611 df-nvc 24563 df-cph 25157 |
| This theorem is referenced by: ishl2 25359 csschl 25365 |
| Copyright terms: Public domain | W3C validator |