MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnvc Structured version   Visualization version   GIF version

Theorem cphnvc 25083
Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
cphnvc (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)

Proof of Theorem cphnvc
StepHypRef Expression
1 cphnlm 25079 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 cphlvec 25082 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
3 isnvc 24589 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
41, 2, 3sylanbrc 583 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  LVecclvec 21015  NrmModcnlm 24474  NrmVeccnvc 24475  ℂPreHilccph 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-xp 5652  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fv 6527  df-ov 7397  df-phl 21541  df-nvc 24481  df-cph 25075
This theorem is referenced by:  ishl2  25277  csschl  25283
  Copyright terms: Public domain W3C validator