![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphnvc | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 25228 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | cphlvec 25231 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
3 | isnvc 24738 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 LVecclvec 21125 NrmModcnlm 24615 NrmVeccnvc 24616 ℂPreHilccph 25222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5313 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5696 df-cnv 5698 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fv 6574 df-ov 7438 df-phl 21668 df-nvc 24622 df-cph 25224 |
This theorem is referenced by: ishl2 25426 csschl 25432 |
Copyright terms: Public domain | W3C validator |