MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnvc Structured version   Visualization version   GIF version

Theorem cphnvc 25165
Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
cphnvc (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)

Proof of Theorem cphnvc
StepHypRef Expression
1 cphnlm 25161 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 cphlvec 25164 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
3 isnvc 24671 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
41, 2, 3sylanbrc 583 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  LVecclvec 21074  NrmModcnlm 24556  NrmVeccnvc 24557  ℂPreHilccph 25155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fv 6550  df-ov 7417  df-phl 21611  df-nvc 24563  df-cph 25157
This theorem is referenced by:  ishl2  25359  csschl  25365
  Copyright terms: Public domain W3C validator