MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnvc Structured version   Visualization version   GIF version

Theorem cphnvc 25074
Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.)
Assertion
Ref Expression
cphnvc (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)

Proof of Theorem cphnvc
StepHypRef Expression
1 cphnlm 25070 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 cphlvec 25073 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
3 isnvc 24581 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
41, 2, 3sylanbrc 583 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  LVecclvec 21006  NrmModcnlm 24466  NrmVeccnvc 24467  ℂPreHilccph 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fv 6490  df-ov 7352  df-phl 21533  df-nvc 24473  df-cph 25066
This theorem is referenced by:  ishl2  25268  csschl  25274
  Copyright terms: Public domain W3C validator