Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphnvc | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 23866 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | cphlvec 23869 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
3 | isnvc 23390 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
4 | 1, 2, 3 | sylanbrc 587 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 LVecclvec 19935 NrmModcnlm 23275 NrmVeccnvc 23276 ℂPreHilccph 23860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5177 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fv 6344 df-ov 7154 df-phl 20384 df-nvc 23282 df-cph 23862 |
This theorem is referenced by: ishl2 24063 csschl 24069 |
Copyright terms: Public domain | W3C validator |