| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphnvc | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25079 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | cphlvec 25082 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
| 3 | isnvc 24589 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LVecclvec 21015 NrmModcnlm 24474 NrmVeccnvc 24475 ℂPreHilccph 25073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-xp 5652 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fv 6527 df-ov 7397 df-phl 21541 df-nvc 24481 df-cph 25075 |
| This theorem is referenced by: ishl2 25277 csschl 25283 |
| Copyright terms: Public domain | W3C validator |