Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisomgr Structured version   Visualization version   GIF version

Theorem isisomgr 43983
Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
isomgr.v 𝑉 = (Vtx‘𝐴)
isomgr.w 𝑊 = (Vtx‘𝐵)
isomgr.i 𝐼 = (iEdg‘𝐴)
isomgr.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
isisomgr (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)

Proof of Theorem isisomgr
StepHypRef Expression
1 isomgrrel 43981 . . . 4 Rel IsomGr
21brrelex12i 5601 . . 3 (𝐴 IsomGr 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 isomgr.v . . . 4 𝑉 = (Vtx‘𝐴)
4 isomgr.w . . . 4 𝑊 = (Vtx‘𝐵)
5 isomgr.i . . . 4 𝐼 = (iEdg‘𝐴)
6 isomgr.j . . . 4 𝐽 = (iEdg‘𝐵)
73, 4, 5, 6isomgr 43982 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
82, 7syl 17 . 2 (𝐴 IsomGr 𝐵 → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
98ibi 269 1 (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  Vcvv 3494   class class class wbr 5058  dom cdm 5549  cima 5552  1-1-ontowf1o 6348  cfv 6349  Vtxcvtx 26775  iEdgciedg 26776   IsomGr cisomgr 43978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isomgr 43980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator