Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isisomgr | Structured version Visualization version GIF version |
Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomgr.i | ⊢ 𝐼 = (iEdg‘𝐴) |
isomgr.j | ⊢ 𝐽 = (iEdg‘𝐵) |
Ref | Expression |
---|---|
isisomgr | ⊢ (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgrrel 44947 | . . . 4 ⊢ Rel IsomGr | |
2 | 1 | brrelex12i 5604 | . . 3 ⊢ (𝐴 IsomGr 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | isomgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐴) | |
4 | isomgr.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐵) | |
5 | isomgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐴) | |
6 | isomgr.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐵) | |
7 | 3, 4, 5, 6 | isomgr 44948 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 IsomGr 𝐵 → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
9 | 8 | ibi 270 | 1 ⊢ (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 class class class wbr 5053 dom cdm 5551 “ cima 5554 –1-1-onto→wf1o 6379 ‘cfv 6380 Vtxcvtx 27087 iEdgciedg 27088 IsomGr cisomgr 44944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isomgr 44946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |