![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isisomgr | Structured version Visualization version GIF version |
Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomgr.i | ⊢ 𝐼 = (iEdg‘𝐴) |
isomgr.j | ⊢ 𝐽 = (iEdg‘𝐵) |
Ref | Expression |
---|---|
isisomgr | ⊢ (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgrrel 43380 | . . . 4 ⊢ Rel IsomGr | |
2 | 1 | brrelex12i 5453 | . . 3 ⊢ (𝐴 IsomGr 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | isomgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐴) | |
4 | isomgr.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐵) | |
5 | isomgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐴) | |
6 | isomgr.j | . . . 4 ⊢ 𝐽 = (iEdg‘𝐵) | |
7 | 3, 4, 5, 6 | isomgr 43381 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 IsomGr 𝐵 → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
9 | 8 | ibi 259 | 1 ⊢ (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ∀wral 3082 Vcvv 3409 class class class wbr 4925 dom cdm 5403 “ cima 5406 –1-1-onto→wf1o 6184 ‘cfv 6185 Vtxcvtx 26496 iEdgciedg 26497 IsomGr cisomgr 43377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isomgr 43379 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |