![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetf | Structured version Visualization version GIF version |
Description: A version of isset 3488 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
issetf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3488 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
2 | issetf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2921 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
5 | eqeq1 2737 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
6 | 3, 4, 5 | cbvexv1 2339 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
7 | 1, 6 | bitri 275 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-v 3477 |
This theorem is referenced by: vtoclgf 3555 spcimgft 3578 fineqvrep 34095 |
Copyright terms: Public domain | W3C validator |