MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetf Structured version   Visualization version   GIF version

Theorem issetf 3488
Description: A version of isset 3486 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1 𝑥𝐴
Assertion
Ref Expression
issetf (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)

Proof of Theorem issetf
StepHypRef Expression
1 issetf.1 . 2 𝑥𝐴
2 issetft 3487 . 2 (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wex 1780  wcel 2105  wnfc 2882  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475
This theorem is referenced by:  vtoclgf  3557  spcimgft  3577  fineqvrep  34561
  Copyright terms: Public domain W3C validator