Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetf Structured version   Visualization version   GIF version

Theorem issetf 3506
 Description: A version of isset 3505 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1 𝑥𝐴
Assertion
Ref Expression
issetf (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)

Proof of Theorem issetf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 3505 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 issetf.1 . . . 4 𝑥𝐴
32nfeq2 2993 . . 3 𝑥 𝑦 = 𝐴
4 nfv 1908 . . 3 𝑦 𝑥 = 𝐴
5 eqeq1 2823 . . 3 (𝑦 = 𝑥 → (𝑦 = 𝐴𝑥 = 𝐴))
63, 4, 5cbvexv1 2355 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
71, 6bitri 277 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   = wceq 1530  ∃wex 1773   ∈ wcel 2107  Ⅎwnfc 2959  Vcvv 3493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495 This theorem is referenced by:  vtoclgf  3564  spcimgft  3584
 Copyright terms: Public domain W3C validator