Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issetf | Structured version Visualization version GIF version |
Description: A version of isset 3443 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
issetf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3443 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
2 | issetf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2925 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfv 1920 | . . 3 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
5 | eqeq1 2743 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
6 | 3, 4, 5 | cbvexv1 2342 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃wex 1785 ∈ wcel 2109 Ⅎwnfc 2888 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-v 3432 |
This theorem is referenced by: vtoclgf 3501 spcimgft 3524 fineqvrep 33043 |
Copyright terms: Public domain | W3C validator |