![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetf | Structured version Visualization version GIF version |
Description: A version of isset 3484 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
issetf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | issetft 3485 | . 2 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Ⅎwnfc 2879 Vcvv 3471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3473 |
This theorem is referenced by: vtoclgf 3555 spcimgft 3574 fineqvrep 34715 |
Copyright terms: Public domain | W3C validator |