|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > issetf | Structured version Visualization version GIF version | ||
| Description: A version of isset 3493 that does not require 𝑥 and 𝐴 to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| issetf.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issetf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | issetft 3495 | . 2 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Ⅎwnfc 2889 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 | 
| This theorem is referenced by: spcimgfi1OLD 3547 vtoclgf 3568 fineqvrep 35110 | 
| Copyright terms: Public domain | W3C validator |