Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvrep Structured version   Visualization version   GIF version

Theorem fineqvrep 35092
Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.)
Assertion
Ref Expression
fineqvrep (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem fineqvrep
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6554 . . . 4 (Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑤∃*𝑧𝑦𝜑)
2 nfa1 2152 . . . . . 6 𝑦𝑦𝜑
32mof 2557 . . . . 5 (∃*𝑧𝑦𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
43albii 1819 . . . 4 (∀𝑤∃*𝑧𝑦𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
51, 4bitr2i 276 . . 3 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
6 vex 3454 . . . . . . 7 𝑥 ∈ V
7 eleq2w2 2726 . . . . . . 7 (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V))
86, 7mpbiri 258 . . . . . 6 (Fin = V → 𝑥 ∈ Fin)
9 imafi 9271 . . . . . 6 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ 𝑥 ∈ Fin) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
108, 9sylan2 593 . . . . 5 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
1110elexd 3474 . . . 4 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
12 nfv 1914 . . . . . . . . . 10 𝑦 𝑤𝑥
132nfopab 5179 . . . . . . . . . . 11 𝑦{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1413nfel2 2911 . . . . . . . . . 10 𝑦𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1512, 14nfan 1899 . . . . . . . . 9 𝑦(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1615nfex 2323 . . . . . . . 8 𝑦𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1716nfab 2898 . . . . . . 7 𝑦{𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
1817issetf 3467 . . . . . 6 ({𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V ↔ ∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})})
19 eqabb 2868 . . . . . . 7 (𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
2019exbii 1848 . . . . . 6 (∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
21 opabidw 5487 . . . . . . . . . . 11 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑦𝜑)
2221anbi2i 623 . . . . . . . . . 10 ((𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ∀𝑦𝜑))
2322exbii 1848 . . . . . . . . 9 (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
2423bibi2i 337 . . . . . . . 8 ((𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2524albii 1819 . . . . . . 7 (∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2625exbii 1848 . . . . . 6 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2718, 20, 263bitrri 298 . . . . 5 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
28 dfima3 6037 . . . . . . 7 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
29 nfv 1914 . . . . . . . . . 10 𝑧 𝑢𝑥
30 nfopab2 5181 . . . . . . . . . . 11 𝑧{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3130nfel2 2911 . . . . . . . . . 10 𝑧𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3229, 31nfan 1899 . . . . . . . . 9 𝑧(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
3332nfex 2323 . . . . . . . 8 𝑧𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
34 nfv 1914 . . . . . . . 8 𝑣𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
35 nfv 1914 . . . . . . . . . . 11 𝑤 𝑢𝑥
36 nfopab1 5180 . . . . . . . . . . . 12 𝑤{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3736nfel2 2911 . . . . . . . . . . 11 𝑤𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3835, 37nfan 1899 . . . . . . . . . 10 𝑤(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
39 nfv 1914 . . . . . . . . . 10 𝑢(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
40 elequ1 2116 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑥𝑤𝑥))
41 opeq1 4840 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ⟨𝑢, 𝑣⟩ = ⟨𝑤, 𝑣⟩)
4241eleq1d 2814 . . . . . . . . . . 11 (𝑢 = 𝑤 → (⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4340, 42anbi12d 632 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4438, 39, 43cbvexv1 2340 . . . . . . . . 9 (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
45 opeq2 4841 . . . . . . . . . . . 12 (𝑣 = 𝑧 → ⟨𝑤, 𝑣⟩ = ⟨𝑤, 𝑧⟩)
4645eleq1d 2814 . . . . . . . . . . 11 (𝑣 = 𝑧 → (⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4746anbi2d 630 . . . . . . . . . 10 (𝑣 = 𝑧 → ((𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4847exbidv 1921 . . . . . . . . 9 (𝑣 = 𝑧 → (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4944, 48bitrid 283 . . . . . . . 8 (𝑣 = 𝑧 → (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
5033, 34, 49cbvabw 2801 . . . . . . 7 {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5128, 50eqtri 2753 . . . . . 6 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5251eleq1i 2820 . . . . 5 (({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
5327, 52bitr4i 278 . . . 4 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
5411, 53sylibr 234 . . 3 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
555, 54sylanb 581 . 2 ((∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
5655expcom 413 1 (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2532  {cab 2708  Vcvv 3450  cop 4598  {copab 5172  cima 5644  Fun wfun 6508  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator