Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvrep Structured version   Visualization version   GIF version

Theorem fineqvrep 33696
Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.)
Assertion
Ref Expression
fineqvrep (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem fineqvrep
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6536 . . . 4 (Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑤∃*𝑧𝑦𝜑)
2 nfa1 2148 . . . . . 6 𝑦𝑦𝜑
32mof 2561 . . . . 5 (∃*𝑧𝑦𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
43albii 1821 . . . 4 (∀𝑤∃*𝑧𝑦𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
51, 4bitr2i 275 . . 3 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
6 vex 3449 . . . . . . 7 𝑥 ∈ V
7 eleq2w2 2732 . . . . . . 7 (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V))
86, 7mpbiri 257 . . . . . 6 (Fin = V → 𝑥 ∈ Fin)
9 imafi 9119 . . . . . 6 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ 𝑥 ∈ Fin) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
108, 9sylan2 593 . . . . 5 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
1110elexd 3465 . . . 4 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
12 nfv 1917 . . . . . . . . . 10 𝑦 𝑤𝑥
132nfopab 5174 . . . . . . . . . . 11 𝑦{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1413nfel2 2925 . . . . . . . . . 10 𝑦𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1512, 14nfan 1902 . . . . . . . . 9 𝑦(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1615nfex 2317 . . . . . . . 8 𝑦𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1716nfab 2913 . . . . . . 7 𝑦{𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
1817issetf 3459 . . . . . 6 ({𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V ↔ ∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})})
19 eqab 2877 . . . . . . 7 (𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
2019exbii 1850 . . . . . 6 (∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
21 opabidw 5481 . . . . . . . . . . 11 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑦𝜑)
2221anbi2i 623 . . . . . . . . . 10 ((𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ∀𝑦𝜑))
2322exbii 1850 . . . . . . . . 9 (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
2423bibi2i 337 . . . . . . . 8 ((𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2524albii 1821 . . . . . . 7 (∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2625exbii 1850 . . . . . 6 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2718, 20, 263bitrri 297 . . . . 5 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
28 dfima3 6016 . . . . . . 7 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
29 nfv 1917 . . . . . . . . . 10 𝑧 𝑢𝑥
30 nfopab2 5176 . . . . . . . . . . 11 𝑧{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3130nfel2 2925 . . . . . . . . . 10 𝑧𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3229, 31nfan 1902 . . . . . . . . 9 𝑧(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
3332nfex 2317 . . . . . . . 8 𝑧𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
34 nfv 1917 . . . . . . . 8 𝑣𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
35 nfv 1917 . . . . . . . . . . 11 𝑤 𝑢𝑥
36 nfopab1 5175 . . . . . . . . . . . 12 𝑤{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3736nfel2 2925 . . . . . . . . . . 11 𝑤𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3835, 37nfan 1902 . . . . . . . . . 10 𝑤(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
39 nfv 1917 . . . . . . . . . 10 𝑢(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
40 elequ1 2113 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑥𝑤𝑥))
41 opeq1 4830 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ⟨𝑢, 𝑣⟩ = ⟨𝑤, 𝑣⟩)
4241eleq1d 2822 . . . . . . . . . . 11 (𝑢 = 𝑤 → (⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4340, 42anbi12d 631 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4438, 39, 43cbvexv1 2338 . . . . . . . . 9 (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
45 opeq2 4831 . . . . . . . . . . . 12 (𝑣 = 𝑧 → ⟨𝑤, 𝑣⟩ = ⟨𝑤, 𝑧⟩)
4645eleq1d 2822 . . . . . . . . . . 11 (𝑣 = 𝑧 → (⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4746anbi2d 629 . . . . . . . . . 10 (𝑣 = 𝑧 → ((𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4847exbidv 1924 . . . . . . . . 9 (𝑣 = 𝑧 → (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4944, 48bitrid 282 . . . . . . . 8 (𝑣 = 𝑧 → (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
5033, 34, 49cbvabw 2810 . . . . . . 7 {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5128, 50eqtri 2764 . . . . . 6 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5251eleq1i 2828 . . . . 5 (({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
5327, 52bitr4i 277 . . . 4 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
5411, 53sylibr 233 . . 3 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
555, 54sylanb 581 . 2 ((∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
5655expcom 414 1 (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2536  {cab 2713  Vcvv 3445  cop 4592  {copab 5167  cima 5636  Fun wfun 6490  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-en 8884  df-fin 8887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator