Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvrep Structured version   Visualization version   GIF version

Theorem fineqvrep 32964
Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.)
Assertion
Ref Expression
fineqvrep (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem fineqvrep
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6453 . . . 4 (Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑤∃*𝑧𝑦𝜑)
2 nfa1 2150 . . . . . 6 𝑦𝑦𝜑
32mof 2563 . . . . 5 (∃*𝑧𝑦𝜑 ↔ ∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
43albii 1823 . . . 4 (∀𝑤∃*𝑧𝑦𝜑 ↔ ∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦))
51, 4bitr2i 275 . . 3 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
6 vex 3426 . . . . . . 7 𝑥 ∈ V
7 eleq2w2 2734 . . . . . . 7 (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V))
86, 7mpbiri 257 . . . . . 6 (Fin = V → 𝑥 ∈ Fin)
9 imafi 8920 . . . . . 6 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ 𝑥 ∈ Fin) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
108, 9sylan2 592 . . . . 5 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ Fin)
1110elexd 3442 . . . 4 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
12 nfv 1918 . . . . . . . . . 10 𝑦 𝑤𝑥
132nfopab 5139 . . . . . . . . . . 11 𝑦{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1413nfel2 2924 . . . . . . . . . 10 𝑦𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
1512, 14nfan 1903 . . . . . . . . 9 𝑦(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1615nfex 2322 . . . . . . . 8 𝑦𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
1716nfab 2912 . . . . . . 7 𝑦{𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
1817issetf 3436 . . . . . 6 ({𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V ↔ ∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})})
19 abeq2 2871 . . . . . . 7 (𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
2019exbii 1851 . . . . . 6 (∃𝑦 𝑦 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
21 opabidw 5431 . . . . . . . . . . 11 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ∀𝑦𝜑)
2221anbi2i 622 . . . . . . . . . 10 ((𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ∀𝑦𝜑))
2322exbii 1851 . . . . . . . . 9 (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
2423bibi2i 337 . . . . . . . 8 ((𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2524albii 1823 . . . . . . 7 (∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2625exbii 1851 . . . . . 6 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
2718, 20, 263bitrri 297 . . . . 5 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
28 dfima3 5961 . . . . . . 7 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
29 nfv 1918 . . . . . . . . . 10 𝑧 𝑢𝑥
30 nfopab2 5141 . . . . . . . . . . 11 𝑧{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3130nfel2 2924 . . . . . . . . . 10 𝑧𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3229, 31nfan 1903 . . . . . . . . 9 𝑧(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
3332nfex 2322 . . . . . . . 8 𝑧𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
34 nfv 1918 . . . . . . . 8 𝑣𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
35 nfv 1918 . . . . . . . . . . 11 𝑤 𝑢𝑥
36 nfopab1 5140 . . . . . . . . . . . 12 𝑤{⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3736nfel2 2924 . . . . . . . . . . 11 𝑤𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}
3835, 37nfan 1903 . . . . . . . . . 10 𝑤(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
39 nfv 1918 . . . . . . . . . 10 𝑢(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})
40 elequ1 2115 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑥𝑤𝑥))
41 opeq1 4801 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ⟨𝑢, 𝑣⟩ = ⟨𝑤, 𝑣⟩)
4241eleq1d 2823 . . . . . . . . . . 11 (𝑢 = 𝑤 → (⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4340, 42anbi12d 630 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4438, 39, 43cbvexv1 2341 . . . . . . . . 9 (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
45 opeq2 4802 . . . . . . . . . . . 12 (𝑣 = 𝑧 → ⟨𝑤, 𝑣⟩ = ⟨𝑤, 𝑧⟩)
4645eleq1d 2823 . . . . . . . . . . 11 (𝑣 = 𝑧 → (⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}))
4746anbi2d 628 . . . . . . . . . 10 (𝑣 = 𝑧 → ((𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ (𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4847exbidv 1925 . . . . . . . . 9 (𝑣 = 𝑧 → (∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
4944, 48syl5bb 282 . . . . . . . 8 (𝑣 = 𝑧 → (∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑}) ↔ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})))
5033, 34, 49cbvabw 2813 . . . . . . 7 {𝑣 ∣ ∃𝑢(𝑢𝑥 ∧ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5128, 50eqtri 2766 . . . . . 6 ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})}
5251eleq1i 2829 . . . . 5 (({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V ↔ {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑})} ∈ V)
5327, 52bitr4i 277 . . . 4 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ({⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} “ 𝑥) ∈ V)
5411, 53sylibr 233 . . 3 ((Fun {⟨𝑤, 𝑧⟩ ∣ ∀𝑦𝜑} ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
555, 54sylanb 580 . 2 ((∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ∧ Fin = V) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
5655expcom 413 1 (Fin = V → (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  {cab 2715  Vcvv 3422  cop 4564  {copab 5132  cima 5583  Fun wfun 6412  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator