![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetft | Structured version Visualization version GIF version |
Description: Closed theorem form of isset 3486 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3540. (Contributed by Wolf Lammen, 9-Apr-2025.) |
Ref | Expression |
---|---|
issetft | ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3486 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
2 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑦Ⅎ𝑥𝐴 | |
3 | nfnfc1 2905 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
4 | nfcvd 2903 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
5 | id 22 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
6 | 4, 5 | nfeqd 2912 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
7 | 6 | nfnd 1860 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 ¬ 𝑦 = 𝐴) |
8 | nfvd 1917 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑦 ¬ 𝑥 = 𝐴) | |
9 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
10 | 9 | notbid 318 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (𝑦 = 𝑥 → (¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴))) |
12 | 2, 3, 7, 8, 11 | cbv2w 2332 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (∀𝑦 ¬ 𝑦 = 𝐴 ↔ ∀𝑥 ¬ 𝑥 = 𝐴)) |
13 | alnex 1782 | . . . 4 ⊢ (∀𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃𝑦 𝑦 = 𝐴) | |
14 | alnex 1782 | . . . 4 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴) | |
15 | 12, 13, 14 | 3bitr3g 313 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (¬ ∃𝑦 𝑦 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴)) |
16 | 15 | con4bid 317 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)) |
17 | 1, 16 | bitrid 283 | 1 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Ⅎwnfc 2882 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-v 3475 |
This theorem is referenced by: issetf 3488 vtoclgft 3540 |
Copyright terms: Public domain | W3C validator |