MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetft Structured version   Visualization version   GIF version

Theorem issetft 3480
Description: Closed theorem form of isset 3478 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3536. (Contributed by Wolf Lammen, 9-Apr-2025.)
Assertion
Ref Expression
issetft (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))

Proof of Theorem issetft
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 3478 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 cbvexeqsetf 3479 . 2 (𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴))
31, 2bitr4id 290 1 (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  wnfc 2884  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-v 3466
This theorem is referenced by:  issetf  3481
  Copyright terms: Public domain W3C validator