![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetft | Structured version Visualization version GIF version |
Description: Closed theorem form of isset 3492 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3552. (Contributed by Wolf Lammen, 9-Apr-2025.) |
Ref | Expression |
---|---|
issetft | ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3492 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
2 | cbvexeqsetf 3493 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Ⅎwnfc 2888 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 |
This theorem is referenced by: issetf 3495 |
Copyright terms: Public domain | W3C validator |