MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetft Structured version   Visualization version   GIF version

Theorem issetft 3487
Description: Closed theorem form of isset 3486 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3540. (Contributed by Wolf Lammen, 9-Apr-2025.)
Assertion
Ref Expression
issetft (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))

Proof of Theorem issetft
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 3486 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 nfv 1916 . . . . 5 𝑦𝑥𝐴
3 nfnfc1 2905 . . . . 5 𝑥𝑥𝐴
4 nfcvd 2903 . . . . . . 7 (𝑥𝐴𝑥𝑦)
5 id 22 . . . . . . 7 (𝑥𝐴𝑥𝐴)
64, 5nfeqd 2912 . . . . . 6 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
76nfnd 1860 . . . . 5 (𝑥𝐴 → Ⅎ𝑥 ¬ 𝑦 = 𝐴)
8 nfvd 1917 . . . . 5 (𝑥𝐴 → Ⅎ𝑦 ¬ 𝑥 = 𝐴)
9 eqeq1 2735 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 = 𝐴𝑥 = 𝐴))
109notbid 318 . . . . . 6 (𝑦 = 𝑥 → (¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴))
1110a1i 11 . . . . 5 (𝑥𝐴 → (𝑦 = 𝑥 → (¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴)))
122, 3, 7, 8, 11cbv2w 2332 . . . 4 (𝑥𝐴 → (∀𝑦 ¬ 𝑦 = 𝐴 ↔ ∀𝑥 ¬ 𝑥 = 𝐴))
13 alnex 1782 . . . 4 (∀𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃𝑦 𝑦 = 𝐴)
14 alnex 1782 . . . 4 (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴)
1512, 13, 143bitr3g 313 . . 3 (𝑥𝐴 → (¬ ∃𝑦 𝑦 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴))
1615con4bid 317 . 2 (𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
171, 16bitrid 283 1 (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1538   = wceq 1540  wex 1780  wcel 2105  wnfc 2882  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475
This theorem is referenced by:  issetf  3488  vtoclgft  3540
  Copyright terms: Public domain W3C validator