| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issetft | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of isset 3478 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3536. (Contributed by Wolf Lammen, 9-Apr-2025.) |
| Ref | Expression |
|---|---|
| issetft | ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3478 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 2 | cbvexeqsetf 3479 | . 2 ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 |
| This theorem is referenced by: issetf 3481 |
| Copyright terms: Public domain | W3C validator |