MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetft Structured version   Visualization version   GIF version

Theorem issetft 3504
Description: Closed theorem form of isset 3502 that does not require 𝑥 and 𝐴 to be distinct. Extracted from the proof of vtoclgft 3564. (Contributed by Wolf Lammen, 9-Apr-2025.)
Assertion
Ref Expression
issetft (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))

Proof of Theorem issetft
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 3502 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 cbvexeqsetf 3503 . 2 (𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴))
31, 2bitr4id 290 1 (𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  wnfc 2893  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by:  issetf  3505
  Copyright terms: Public domain W3C validator