| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneq2f | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| iuneq2f.1 | ⊢ Ⅎ𝑥𝐴 |
| iuneq2f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| iuneq2f | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | iuneq2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2912 | . 2 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 5 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 6 | 3, 1, 2, 4, 5 | iuneq12df 4994 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2883 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-iun 4969 |
| This theorem is referenced by: iuneq12f 38187 |
| Copyright terms: Public domain | W3C validator |