Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq2f Structured version   Visualization version   GIF version

Theorem iuneq2f 36241
Description: Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Hypotheses
Ref Expression
iuneq2f.1 𝑥𝐴
iuneq2f.2 𝑥𝐵
Assertion
Ref Expression
iuneq2f (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)

Proof of Theorem iuneq2f
StepHypRef Expression
1 iuneq2f.1 . . 3 𝑥𝐴
2 iuneq2f.2 . . 3 𝑥𝐵
31, 2nfeq 2919 . 2 𝑥 𝐴 = 𝐵
4 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
5 eqidd 2739 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
63, 1, 2, 4, 5iuneq12df 4947 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2886   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-iun 4923
This theorem is referenced by:  iuneq12f  36248
  Copyright terms: Public domain W3C validator