Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq12f Structured version   Visualization version   GIF version

Theorem iuneq12f 38129
Description: Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iuneq12f.1 𝑥𝐴
iuneq12f.2 𝑥𝐵
Assertion
Ref Expression
iuneq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iuneq12f
StepHypRef Expression
1 iuneq2 4991 . 2 (∀𝑥𝐴 𝐶 = 𝐷 𝑥𝐴 𝐶 = 𝑥𝐴 𝐷)
2 iuneq12f.1 . . 3 𝑥𝐴
3 iuneq12f.2 . . 3 𝑥𝐵
42, 3iuneq2f 38122 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐷 = 𝑥𝐵 𝐷)
51, 4sylan9eqr 2791 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnfc 2882  wral 3050   ciun 4971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-v 3465  df-ss 3948  df-iun 4973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator