Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq12f Structured version   Visualization version   GIF version

Theorem iuneq12f 37877
Description: Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iuneq12f.1 𝑥𝐴
iuneq12f.2 𝑥𝐵
Assertion
Ref Expression
iuneq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iuneq12f
StepHypRef Expression
1 iuneq2 5012 . 2 (∀𝑥𝐴 𝐶 = 𝐷 𝑥𝐴 𝐶 = 𝑥𝐴 𝐷)
2 iuneq12f.1 . . 3 𝑥𝐴
3 iuneq12f.2 . . 3 𝑥𝐵
42, 3iuneq2f 37870 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐷 = 𝑥𝐵 𝐷)
51, 4sylan9eqr 2788 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnfc 2876  wral 3051   ciun 4993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-v 3464  df-ss 3963  df-iun 4995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator