![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneq12f | Structured version Visualization version GIF version |
Description: Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
iuneq12f.1 | ⊢ Ⅎ𝑥𝐴 |
iuneq12f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
iuneq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 5034 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐴 𝐷) | |
2 | iuneq12f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | iuneq12f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | iuneq2f 38118 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐷 = ∪ 𝑥 ∈ 𝐵 𝐷) |
5 | 1, 4 | sylan9eqr 2802 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnfc 2893 ∀wral 3067 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |