MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxiun Structured version   Visualization version   GIF version

Theorem iunxiun 5026
Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunxiun 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem iunxiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eliun 4928 . . . . . . . 8 (𝑥 𝑦𝐴 𝐵 ↔ ∃𝑦𝐴 𝑥𝐵)
21anbi1i 624 . . . . . . 7 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
3 r19.41v 3276 . . . . . . 7 (∃𝑦𝐴 (𝑥𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
42, 3bitr4i 277 . . . . . 6 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴 (𝑥𝐵𝑧𝐶))
54exbii 1850 . . . . 5 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
6 rexcom4 3233 . . . . 5 (∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
75, 6bitr4i 277 . . . 4 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
8 df-rex 3070 . . . 4 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶))
9 eliun 4928 . . . . . 6 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
10 df-rex 3070 . . . . . 6 (∃𝑥𝐵 𝑧𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
119, 10bitri 274 . . . . 5 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
1211rexbii 3181 . . . 4 (∃𝑦𝐴 𝑧 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
137, 8, 123bitr4i 303 . . 3 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
14 eliun 4928 . . 3 (𝑧 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∃𝑥 𝑦𝐴 𝐵𝑧𝐶)
15 eliun 4928 . . 3 (𝑧 𝑦𝐴 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
1613, 14, 153bitr4i 303 . 2 (𝑧 𝑥 𝑦𝐴 𝐵𝐶𝑧 𝑦𝐴 𝑥𝐵 𝐶)
1716eqriv 2735 1 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-iun 4926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator