MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxprg Structured version   Visualization version   GIF version

Theorem iunxprg 4978
Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Hypotheses
Ref Expression
iunxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iunxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iunxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxprg
StepHypRef Expression
1 df-pr 4516 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 iuneq1 4894 . . . 4 ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶)
31, 2ax-mp 5 . . 3 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶
4 iunxun 4976 . . 3 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
53, 4eqtri 2761 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
6 iunxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
76iunxsng 4972 . . . 4 (𝐴𝑉 𝑥 ∈ {𝐴}𝐶 = 𝐷)
87adantr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴}𝐶 = 𝐷)
9 iunxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
109iunxsng 4972 . . . 4 (𝐵𝑊 𝑥 ∈ {𝐵}𝐶 = 𝐸)
1110adantl 485 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐵}𝐶 = 𝐸)
128, 11uneq12d 4052 . 2 ((𝐴𝑉𝐵𝑊) → ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶) = (𝐷𝐸))
135, 12syl5eq 2785 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  cun 3839  {csn 4513  {cpr 4515   ciun 4878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3399  df-un 3846  df-in 3848  df-ss 3858  df-sn 4514  df-pr 4516  df-iun 4880
This theorem is referenced by:  iunxunpr  30473  ovnsubadd2lem  43709  rnfdmpr  44290
  Copyright terms: Public domain W3C validator