Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem2 Structured version   Visualization version   GIF version

Theorem en3lplem2 9064
 Description: Lemma for en3lp 9065. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem en3lplem2
StepHypRef Expression
1 en3lplem1 9063 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
2 en3lplem1 9063 . . . . . . . 8 ((𝐵𝐶𝐶𝐴𝐴𝐵) → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅))
323comr 1122 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅))
43a1d 25 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅)))
5 tprot 4648 . . . . . . . . 9 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
65ineq2i 4139 . . . . . . . 8 (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = (𝑥 ∩ {𝐵, 𝐶, 𝐴})
76neeq1i 3054 . . . . . . 7 ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅ ↔ (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅)
87bicomi 227 . . . . . 6 ((𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅ ↔ (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
94, 8syl8ib 259 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐵 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)))
10 jao 958 . . . . 5 ((𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) → ((𝑥 = 𝐵 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) → ((𝑥 = 𝐴𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)))
111, 9, 10sylsyld 61 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 = 𝐴𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)))
1211imp 410 . . 3 (((𝐴𝐵𝐵𝐶𝐶𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → ((𝑥 = 𝐴𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
13 en3lplem1 9063 . . . . . . 7 ((𝐶𝐴𝐴𝐵𝐵𝐶) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅))
14133coml 1124 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅))
1514a1d 25 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅)))
16 tprot 4648 . . . . . . 7 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
1716ineq2i 4139 . . . . . 6 (𝑥 ∩ {𝐶, 𝐴, 𝐵}) = (𝑥 ∩ {𝐴, 𝐵, 𝐶})
1817neeq1i 3054 . . . . 5 ((𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅ ↔ (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
1915, 18syl8ib 259 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐶 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)))
2019imp 410 . . 3 (((𝐴𝐵𝐵𝐶𝐶𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
21 idd 24 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → 𝑥 ∈ {𝐴, 𝐵, 𝐶}))
22 dftp2 4590 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}
2322eleq2i 2884 . . . . . . 7 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)})
2421, 23syl6ib 254 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}))
25 abid 2783 . . . . . 6 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
2624, 25syl6ib 254 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)))
27 df-3or 1085 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) ↔ ((𝑥 = 𝐴𝑥 = 𝐵) ∨ 𝑥 = 𝐶))
2826, 27syl6ib 254 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 = 𝐴𝑥 = 𝐵) ∨ 𝑥 = 𝐶)))
2928imp 410 . . 3 (((𝐴𝐵𝐵𝐶𝐶𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → ((𝑥 = 𝐴𝑥 = 𝐵) ∨ 𝑥 = 𝐶))
3012, 20, 29mpjaod 857 . 2 (((𝐴𝐵𝐵𝐶𝐶𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
3130ex 416 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  {cab 2779   ≠ wne 2990   ∩ cin 3883  ∅c0 4246  {ctp 4532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ne 2991  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-nul 4247  df-sn 4529  df-pr 4531  df-tp 4533 This theorem is referenced by:  en3lp  9065
 Copyright terms: Public domain W3C validator