Proof of Theorem en3lplem2
| Step | Hyp | Ref
| Expression |
| 1 | | en3lplem1 9652 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| 2 | | en3lplem1 9652 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅)) |
| 3 | 2 | 3comr 1126 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅)) |
| 4 | 3 | a1d 25 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐵 → (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅))) |
| 5 | | tprot 4749 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| 6 | 5 | ineq2i 4217 |
. . . . . . . 8
⊢ (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = (𝑥 ∩ {𝐵, 𝐶, 𝐴}) |
| 7 | 6 | neeq1i 3005 |
. . . . . . 7
⊢ ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅ ↔ (𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅) |
| 8 | 7 | bicomi 224 |
. . . . . 6
⊢ ((𝑥 ∩ {𝐵, 𝐶, 𝐴}) ≠ ∅ ↔ (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
| 9 | 4, 8 | syl8ib 256 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐵 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))) |
| 10 | | jao 963 |
. . . . 5
⊢ ((𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) → ((𝑥 = 𝐵 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))) |
| 11 | 1, 9, 10 | sylsyld 61 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))) |
| 12 | 11 | imp 406 |
. . 3
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| 13 | | en3lplem1 9652 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅)) |
| 14 | 13 | 3coml 1128 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅)) |
| 15 | 14 | a1d 25 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐶 → (𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅))) |
| 16 | | tprot 4749 |
. . . . . . 7
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
| 17 | 16 | ineq2i 4217 |
. . . . . 6
⊢ (𝑥 ∩ {𝐶, 𝐴, 𝐵}) = (𝑥 ∩ {𝐴, 𝐵, 𝐶}) |
| 18 | 17 | neeq1i 3005 |
. . . . 5
⊢ ((𝑥 ∩ {𝐶, 𝐴, 𝐵}) ≠ ∅ ↔ (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
| 19 | 15, 18 | syl8ib 256 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐶 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))) |
| 20 | 19 | imp 406 |
. . 3
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 = 𝐶 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| 21 | | idd 24 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → 𝑥 ∈ {𝐴, 𝐵, 𝐶})) |
| 22 | | dftp2 4691 |
. . . . . . . 8
⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
| 23 | 22 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)}) |
| 24 | 21, 23 | imbitrdi 251 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)})) |
| 25 | | abid 2718 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
| 26 | 24, 25 | imbitrdi 251 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶))) |
| 27 | | df-3or 1088 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∨ 𝑥 = 𝐶)) |
| 28 | 26, 27 | imbitrdi 251 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∨ 𝑥 = 𝐶))) |
| 29 | 28 | imp 406 |
. . 3
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∨ 𝑥 = 𝐶)) |
| 30 | 12, 20, 29 | mpjaod 861 |
. 2
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) ∧ 𝑥 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
| 31 | 30 | ex 412 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |