Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq2d | Structured version Visualization version GIF version |
Description: Specialization of breq2d 5086 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
leeq2d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
leeq2d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
leeq2d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
leeq2d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
leeq2d | ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | leeq2d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breqtrd 5100 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: imo72b2lem0 41776 |
Copyright terms: Public domain | W3C validator |