![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq2d | Structured version Visualization version GIF version |
Description: Specialization of breq2d 5178 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
leeq2d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
leeq2d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
leeq2d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
leeq2d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
leeq2d | ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | leeq2d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breqtrd 5192 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: imo72b2lem0 44127 |
Copyright terms: Public domain | W3C validator |