Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leeq2d Structured version   Visualization version   GIF version

Theorem leeq2d 41768
Description: Specialization of breq2d 5086 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
leeq2d.1 (𝜑𝐴𝐶)
leeq2d.2 (𝜑𝐶 = 𝐷)
leeq2d.3 (𝜑𝐴 ∈ ℝ)
leeq2d.4 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
leeq2d (𝜑𝐴𝐷)

Proof of Theorem leeq2d
StepHypRef Expression
1 leeq2d.1 . 2 (𝜑𝐴𝐶)
2 leeq2d.2 . 2 (𝜑𝐶 = 𝐷)
31, 2breqtrd 5100 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   class class class wbr 5074  cr 10870  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  imo72b2lem0  41776
  Copyright terms: Public domain W3C validator