Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leeq2d Structured version   Visualization version   GIF version

Theorem leeq2d 44120
Description: Specialization of breq2d 5178 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
leeq2d.1 (𝜑𝐴𝐶)
leeq2d.2 (𝜑𝐶 = 𝐷)
leeq2d.3 (𝜑𝐴 ∈ ℝ)
leeq2d.4 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
leeq2d (𝜑𝐴𝐷)

Proof of Theorem leeq2d
StepHypRef Expression
1 leeq2d.1 . 2 (𝜑𝐴𝐶)
2 leeq2d.2 . 2 (𝜑𝐶 = 𝐷)
31, 2breqtrd 5192 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cr 11183  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by:  imo72b2lem0  44127
  Copyright terms: Public domain W3C validator