Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leeq2d Structured version   Visualization version   GIF version

Theorem leeq2d 42522
Description: Specialization of breq2d 5121 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
leeq2d.1 (𝜑𝐴𝐶)
leeq2d.2 (𝜑𝐶 = 𝐷)
leeq2d.3 (𝜑𝐴 ∈ ℝ)
leeq2d.4 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
leeq2d (𝜑𝐴𝐷)

Proof of Theorem leeq2d
StepHypRef Expression
1 leeq2d.1 . 2 (𝜑𝐴𝐶)
2 leeq2d.2 . 2 (𝜑𝐶 = 𝐷)
31, 2breqtrd 5135 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   class class class wbr 5109  cr 11058  cle 11198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110
This theorem is referenced by:  imo72b2lem0  42530
  Copyright terms: Public domain W3C validator