| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq2d | Structured version Visualization version GIF version | ||
| Description: Specialization of breq2d 5136 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| leeq2d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| leeq2d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| leeq2d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| leeq2d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| leeq2d | ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 2 | leeq2d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breqtrd 5150 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |