Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq2d | Structured version Visualization version GIF version |
Description: Specialization of breq2d 5082 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
leeq2d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
leeq2d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
leeq2d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
leeq2d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
leeq2d | ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | leeq2d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breqtrd 5096 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: imo72b2lem0 41665 |
Copyright terms: Public domain | W3C validator |