| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq1d | Structured version Visualization version GIF version | ||
| Description: Specialization of breq1d 5099 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| leeq1d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| leeq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| leeq1d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| leeq1d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| leeq1d | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leeq1d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | leeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | 1, 2 | eqbrtrrd 5113 | 1 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |