![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq1d | Structured version Visualization version GIF version |
Description: Specialization of breq1d 4940 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
leeq1d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
leeq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
leeq1d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
leeq1d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
leeq1d | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq1d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | leeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | 1, 2 | eqbrtrrd 4954 | 1 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 class class class wbr 4930 ℝcr 10336 ≤ cle 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 |
This theorem is referenced by: imo72b2lem0 39880 |
Copyright terms: Public domain | W3C validator |