Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leeq1d Structured version   Visualization version   GIF version

Theorem leeq1d 44260
Description: Specialization of breq1d 5099 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
leeq1d.1 (𝜑𝐴𝐶)
leeq1d.2 (𝜑𝐴 = 𝐵)
leeq1d.3 (𝜑𝐴 ∈ ℝ)
leeq1d.4 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
leeq1d (𝜑𝐵𝐶)

Proof of Theorem leeq1d
StepHypRef Expression
1 leeq1d.2 . 2 (𝜑𝐴 = 𝐵)
2 leeq1d.1 . 2 (𝜑𝐴𝐶)
31, 2eqbrtrrd 5113 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  cr 11005  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator