Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leeq1d | Structured version Visualization version GIF version |
Description: Specialization of breq1d 5085 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
leeq1d.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
leeq1d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
leeq1d.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
leeq1d.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
leeq1d | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leeq1d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | leeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | 1, 2 | eqbrtrrd 5099 | 1 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ℝcr 10879 ≤ cle 11019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 |
This theorem is referenced by: imo72b2lem0 41783 |
Copyright terms: Public domain | W3C validator |