Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leeq1d Structured version   Visualization version   GIF version

Theorem leeq1d 41656
Description: Specialization of breq1d 5080 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
leeq1d.1 (𝜑𝐴𝐶)
leeq1d.2 (𝜑𝐴 = 𝐵)
leeq1d.3 (𝜑𝐴 ∈ ℝ)
leeq1d.4 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
leeq1d (𝜑𝐵𝐶)

Proof of Theorem leeq1d
StepHypRef Expression
1 leeq1d.2 . 2 (𝜑𝐴 = 𝐵)
2 leeq1d.1 . 2 (𝜑𝐴𝐶)
31, 2eqbrtrrd 5094 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by:  imo72b2lem0  41665
  Copyright terms: Public domain W3C validator