Step | Hyp | Ref
| Expression |
1 | | imo72b2lem0.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | | imo72b2lem0.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1, 2 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
4 | 3 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
5 | 4 | idi 1 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
6 | | imo72b2lem0.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
7 | | imo72b2lem0.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
8 | 6, 7 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℝ) |
9 | 8 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℂ) |
10 | 9 | idi 1 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℂ) |
11 | 5, 10 | mulcld 10995 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℂ) |
12 | 11 | abscld 15148 |
. . 3
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℝ) |
13 | | imaco 6155 |
. . . . . 6
⊢ ((abs
∘ 𝐹) “ ℝ)
= (abs “ (𝐹 “
ℝ)) |
14 | 13 | eqcomi 2747 |
. . . . 5
⊢ (abs
“ (𝐹 “
ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
15 | | imassrn 5980 |
. . . . . . 7
⊢ ((abs
∘ 𝐹) “ ℝ)
⊆ ran (abs ∘ 𝐹) |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran
(abs ∘ 𝐹)) |
17 | | absf 15049 |
. . . . . . . . . 10
⊢
abs:ℂ⟶ℝ |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
19 | | ax-resscn 10928 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ⊆
ℂ) |
21 | 18, 20 | fssresd 6641 |
. . . . . . . 8
⊢ (𝜑 → (abs ↾
ℝ):ℝ⟶ℝ) |
22 | 1, 21 | fco2d 41773 |
. . . . . . 7
⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
23 | 22 | frnd 6608 |
. . . . . 6
⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆
ℝ) |
24 | 16, 23 | sstrd 3931 |
. . . . 5
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆
ℝ) |
25 | 14, 24 | eqsstrid 3969 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆
ℝ) |
26 | | 0re 10977 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
27 | 26 | ne0ii 4271 |
. . . . . . . . 9
⊢ ℝ
≠ ∅ |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ≠
∅) |
29 | 28, 22 | wnefimgd 41772 |
. . . . . . 7
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠
∅) |
30 | 29 | necomd 2999 |
. . . . . 6
⊢ (𝜑 → ∅ ≠ ((abs ∘
𝐹) “
ℝ)) |
31 | 14 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs
∘ 𝐹) “
ℝ)) |
32 | 30, 31 | neeqtrrd 3018 |
. . . . 5
⊢ (𝜑 → ∅ ≠ (abs “
(𝐹 “
ℝ))) |
33 | 32 | necomd 2999 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠
∅) |
34 | | 1red 10976 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
35 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) |
36 | 35 | breq2d 5086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑥 ≤ 𝑐 ↔ 𝑥 ≤ 1)) |
37 | 36 | ralbidv 3112 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)) |
38 | | imo72b2lem0.6 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
39 | 1, 38 | extoimad 41775 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1) |
40 | 34, 37, 39 | rspcedvd 3563 |
. . . 4
⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐) |
41 | 25, 33, 40 | suprcld 11938 |
. . 3
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℝ) |
42 | | 2re 12047 |
. . . 4
⊢ 2 ∈
ℝ |
43 | 42 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℝ) |
44 | | imo72b2lem0.5 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) |
45 | 44 | idi 1 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) |
46 | 45 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) = (abs‘(2 · ((𝐹‘𝐴) · (𝐺‘𝐵))))) |
47 | | 2cnd 12051 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℂ) |
48 | 47, 11 | mulcld 10995 |
. . . . . . . 8
⊢ (𝜑 → (2 · ((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℂ) |
49 | 48 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ∈ ℝ) |
50 | 46, 49 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
51 | 1 | idi 1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
52 | 2 | idi 1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
53 | 7 | idi 1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
54 | 52, 53 | readdcld 11004 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
55 | 51, 54 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ) |
56 | 55 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ) |
57 | 56 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ) |
58 | 52, 53 | resubcld 11403 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
59 | 51, 58 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℝ) |
60 | 59 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℂ) |
61 | 60 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ ℝ) |
62 | 57, 61 | readdcld 11004 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
63 | 43, 41 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) ∈ ℝ) |
64 | 56, 60 | abstrid 15168 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵))))) |
65 | 1, 54 | fvco3d 6868 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵)))) |
66 | 54, 22 | wfximgfd 41774 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
67 | 31 | idi 1 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs
∘ 𝐹) “
ℝ)) |
68 | 66, 67 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
69 | 65, 68 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
70 | 25, 33, 40, 69 | suprubd 11937 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
71 | 1, 58 | fvco3d 6868 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) = (abs‘(𝐹‘(𝐴 − 𝐵)))) |
72 | 58, 22 | wfximgfd 41774 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
73 | 72, 31 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
74 | 71, 73 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
75 | 25, 33, 40, 74 | suprubd 11937 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
76 | 57, 61, 41, 41, 70, 75 | le2addd 11594 |
. . . . . . 7
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, <
))) |
77 | 41 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℂ) |
78 | 77 | 2timesd 12216 |
. . . . . . . 8
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) +
sup((abs “ (𝐹 “
ℝ)), ℝ, < ))) |
79 | 78 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2
· sup((abs “ (𝐹 “ ℝ)), ℝ, <
))) |
80 | 79, 63 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈
ℝ) |
81 | 76, 79, 62, 80 | leeq2d 41768 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
82 | 50, 62, 63, 64, 81 | letrd 11132 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
83 | 82, 46, 50, 63 | leeq1d 41767 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
84 | | 0le2 12075 |
. . . . . 6
⊢ 0 ≤
2 |
85 | 84 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ≤ 2) |
86 | 3 | idi 1 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
87 | 8 | idi 1 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℝ) |
88 | 86, 87 | remulcld 11005 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℝ) |
89 | 85, 43, 88 | absmulrposd 41769 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) = (2 · (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))))) |
90 | 83, 89, 49, 63 | leeq1d 41767 |
. . 3
⊢ (𝜑 → (2 ·
(abs‘((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
91 | | 2pos 12076 |
. . . 4
⊢ 0 <
2 |
92 | 91 | a1i 11 |
. . 3
⊢ (𝜑 → 0 < 2) |
93 | 12, 41, 43, 90, 92 | wwlemuld 41766 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
94 | 4, 9 | absmuld 15166 |
. . 3
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) = ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵)))) |
95 | 94 | idi 1 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) = ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵)))) |
96 | 93, 95, 12, 41 | leeq1d 41767 |
1
⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |