Mathbox for Stanislas Polu < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   GIF version

Theorem imo72b2lem0 39304
 Description: Lemma for imo72b2 39314. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem0.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2lem0.3 (𝜑𝐴 ∈ ℝ)
imo72b2lem0.4 (𝜑𝐵 ∈ ℝ)
imo72b2lem0.5 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
imo72b2lem0.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem0 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐺(𝑦)

Proof of Theorem imo72b2lem0
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
2 imo72b2lem0.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
31, 2ffvelrnd 6614 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
43recnd 10392 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℂ)
54idi 2 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℂ)
6 imo72b2lem0.2 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
7 imo72b2lem0.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
86, 7ffvelrnd 6614 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
98recnd 10392 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℂ)
109idi 2 . . . . 5 (𝜑 → (𝐺𝐵) ∈ ℂ)
115, 10mulcld 10384 . . . 4 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
1211abscld 14559 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ∈ ℝ)
13 imaco 5885 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1413eqcomi 2834 . . . . 5 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
15 imassrn 5722 . . . . . . 7 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1615a1i 11 . . . . . 6 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
17 absf 14461 . . . . . . . . . 10 abs:ℂ⟶ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → abs:ℂ⟶ℝ)
19 ax-resscn 10316 . . . . . . . . . 10 ℝ ⊆ ℂ
2019a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
2118, 20fssresd 6312 . . . . . . . 8 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
221, 21fco2d 39300 . . . . . . 7 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
2322frnd 6289 . . . . . 6 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
2416, 23sstrd 3837 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2514, 24syl5eqss 3874 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
26 0re 10365 . . . . . . . . . 10 0 ∈ ℝ
2726ne0ii 4155 . . . . . . . . 9 ℝ ≠ ∅
2827a1i 11 . . . . . . . 8 (𝜑 → ℝ ≠ ∅)
2928, 22wnefimgd 39299 . . . . . . 7 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3029necomd 3054 . . . . . 6 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3114a1i 11 . . . . . 6 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3230, 31neeqtrrd 3073 . . . . 5 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3332necomd 3054 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
34 1red 10364 . . . . 5 (𝜑 → 1 ∈ ℝ)
35 simpr 479 . . . . . . 7 ((𝜑𝑐 = 1) → 𝑐 = 1)
3635breq2d 4887 . . . . . 6 ((𝜑𝑐 = 1) → (𝑥𝑐𝑥 ≤ 1))
3736ralbidv 3195 . . . . 5 ((𝜑𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1))
38 imo72b2lem0.6 . . . . . 6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
391, 38extoimad 39303 . . . . 5 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)
4034, 37, 39rspcedvd 3533 . . . 4 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐)
4125, 33, 40suprcld 11323 . . 3 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
42 2re 11432 . . . 4 2 ∈ ℝ
4342a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
44 imo72b2lem0.5 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4544idi 2 . . . . . . . 8 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4645fveq2d 6441 . . . . . . 7 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) = (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))))
47 2cnd 11436 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
4847, 11mulcld 10384 . . . . . . . 8 (𝜑 → (2 · ((𝐹𝐴) · (𝐺𝐵))) ∈ ℂ)
4948abscld 14559 . . . . . . 7 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ∈ ℝ)
5046, 49eqeltrd 2906 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ∈ ℝ)
511idi 2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
522idi 2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
537idi 2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5452, 53readdcld 10393 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5551, 54ffvelrnd 6614 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ)
5655recnd 10392 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ)
5756abscld 14559 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ)
5852, 53resubcld 10789 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) ∈ ℝ)
5951, 58ffvelrnd 6614 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℝ)
6059recnd 10392 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℂ)
6160abscld 14559 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ ℝ)
6257, 61readdcld 10393 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ∈ ℝ)
6343, 41remulcld 10394 . . . . . 6 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
6456, 60abstrid 14579 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))))
651, 54fvco3d 39301 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵))))
6654, 22wfximgfd 39302 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
6731idi 2 . . . . . . . . . . 11 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
6866, 67eleqtrrd 2909 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
6965, 68eqeltrrd 2907 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7025, 33, 40, 69suprubd 11322 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
711, 58fvco3d 39301 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) = (abs‘(𝐹‘(𝐴𝐵))))
7258, 22wfximgfd 39302 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
7372, 31eleqtrrd 2909 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
7471, 73eqeltrrd 2907 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7525, 33, 40, 74suprubd 11322 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
7657, 61, 41, 41, 70, 75le2addd 10978 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7741recnd 10392 . . . . . . . . 9 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
78772timesd 11608 . . . . . . . 8 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7978eqcomd 2831 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8079, 63eqeltrd 2906 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
8176, 79, 62, 80leeq2d 39295 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8250, 62, 63, 64, 81letrd 10520 . . . . 5 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8382, 46, 50, 63leeq1d 39294 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
84 0le2 11467 . . . . . 6 0 ≤ 2
8584a1i 11 . . . . 5 (𝜑 → 0 ≤ 2)
863idi 2 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
878idi 2 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℝ)
8886, 87remulcld 10394 . . . . 5 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℝ)
8985, 43, 88absmulrposd 39296 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) = (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))))
9083, 89, 49, 63leeq1d 39294 . . 3 (𝜑 → (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
91 2pos 11468 . . . 4 0 < 2
9291a1i 11 . . 3 (𝜑 → 0 < 2)
9312, 41, 43, 90, 92wwlemuld 39293 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
944, 9absmuld 14577 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9594idi 2 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9693, 95, 12, 41leeq1d 39294 1 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∀wral 3117   ⊆ wss 3798  ∅c0 4146   class class class wbr 4875  ran crn 5347   “ cima 5349   ∘ ccom 5350  ⟶wf 6123  ‘cfv 6127  (class class class)co 6910  supcsup 8621  ℂcc 10257  ℝcr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264   < clt 10398   ≤ cle 10399   − cmin 10592  2c2 11413  abscabs 14358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360 This theorem is referenced by:  imo72b2  39314
 Copyright terms: Public domain W3C validator