Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   GIF version

Theorem imo72b2lem0 39139
Description: Lemma for imo72b2 39149. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem0.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2lem0.3 (𝜑𝐴 ∈ ℝ)
imo72b2lem0.4 (𝜑𝐵 ∈ ℝ)
imo72b2lem0.5 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
imo72b2lem0.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem0 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐺(𝑦)

Proof of Theorem imo72b2lem0
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
2 imo72b2lem0.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
31, 2ffvelrnd 6550 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
43recnd 10322 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℂ)
54idi 2 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℂ)
6 imo72b2lem0.2 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
7 imo72b2lem0.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
86, 7ffvelrnd 6550 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
98recnd 10322 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℂ)
109idi 2 . . . . 5 (𝜑 → (𝐺𝐵) ∈ ℂ)
115, 10mulcld 10314 . . . 4 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
1211abscld 14460 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ∈ ℝ)
13 imaco 5826 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1413eqcomi 2774 . . . . 5 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
15 imassrn 5659 . . . . . . 7 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1615a1i 11 . . . . . 6 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
17 absf 14362 . . . . . . . . . 10 abs:ℂ⟶ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → abs:ℂ⟶ℝ)
19 ax-resscn 10246 . . . . . . . . . 10 ℝ ⊆ ℂ
2019a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
2118, 20fssresd 6253 . . . . . . . 8 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
221, 21fco2d 39135 . . . . . . 7 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
2322frnd 6230 . . . . . 6 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
2416, 23sstrd 3771 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2514, 24syl5eqss 3809 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
26 0re 10295 . . . . . . . . . 10 0 ∈ ℝ
2726ne0ii 4088 . . . . . . . . 9 ℝ ≠ ∅
2827a1i 11 . . . . . . . 8 (𝜑 → ℝ ≠ ∅)
2928, 22wnefimgd 39134 . . . . . . 7 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3029necomd 2992 . . . . . 6 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3114a1i 11 . . . . . 6 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3230, 31neeqtrrd 3011 . . . . 5 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3332necomd 2992 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
34 1red 10294 . . . . 5 (𝜑 → 1 ∈ ℝ)
35 simpr 477 . . . . . . 7 ((𝜑𝑐 = 1) → 𝑐 = 1)
3635breq2d 4821 . . . . . 6 ((𝜑𝑐 = 1) → (𝑥𝑐𝑥 ≤ 1))
3736ralbidv 3133 . . . . 5 ((𝜑𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1))
38 imo72b2lem0.6 . . . . . 6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
391, 38extoimad 39138 . . . . 5 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)
4034, 37, 39rspcedvd 3468 . . . 4 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐)
4125, 33, 40suprcld 11240 . . 3 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
42 2re 11346 . . . 4 2 ∈ ℝ
4342a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
44 imo72b2lem0.5 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4544idi 2 . . . . . . . 8 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4645fveq2d 6379 . . . . . . 7 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) = (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))))
47 2cnd 11350 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
4847, 11mulcld 10314 . . . . . . . 8 (𝜑 → (2 · ((𝐹𝐴) · (𝐺𝐵))) ∈ ℂ)
4948abscld 14460 . . . . . . 7 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ∈ ℝ)
5046, 49eqeltrd 2844 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ∈ ℝ)
511idi 2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
522idi 2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
537idi 2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5452, 53readdcld 10323 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5551, 54ffvelrnd 6550 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ)
5655recnd 10322 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ)
5756abscld 14460 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ)
5852, 53resubcld 10712 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) ∈ ℝ)
5951, 58ffvelrnd 6550 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℝ)
6059recnd 10322 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℂ)
6160abscld 14460 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ ℝ)
6257, 61readdcld 10323 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ∈ ℝ)
6343, 41remulcld 10324 . . . . . 6 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
6456, 60abstrid 14480 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))))
651, 54fvco3d 39136 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵))))
6654, 22wfximgfd 39137 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
6731idi 2 . . . . . . . . . . 11 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
6866, 67eleqtrrd 2847 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
6965, 68eqeltrrd 2845 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7025, 33, 40, 69suprubd 11239 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
711, 58fvco3d 39136 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) = (abs‘(𝐹‘(𝐴𝐵))))
7258, 22wfximgfd 39137 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
7372, 31eleqtrrd 2847 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
7471, 73eqeltrrd 2845 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7525, 33, 40, 74suprubd 11239 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
7657, 61, 41, 41, 70, 75le2addd 10900 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7741recnd 10322 . . . . . . . . 9 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
78772timesd 11521 . . . . . . . 8 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7978eqcomd 2771 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8079, 63eqeltrd 2844 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
8176, 79, 62, 80leeq2d 39130 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8250, 62, 63, 64, 81letrd 10448 . . . . 5 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8382, 46, 50, 63leeq1d 39129 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
84 0le2 11381 . . . . . 6 0 ≤ 2
8584a1i 11 . . . . 5 (𝜑 → 0 ≤ 2)
863idi 2 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
878idi 2 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℝ)
8886, 87remulcld 10324 . . . . 5 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℝ)
8985, 43, 88absmulrposd 39131 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) = (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))))
9083, 89, 49, 63leeq1d 39129 . . 3 (𝜑 → (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
91 2pos 11382 . . . 4 0 < 2
9291a1i 11 . . 3 (𝜑 → 0 < 2)
9312, 41, 43, 90, 92wwlemuld 39128 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
944, 9absmuld 14478 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9594idi 2 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9693, 95, 12, 41leeq1d 39129 1 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wss 3732  c0 4079   class class class wbr 4809  ran crn 5278  cima 5280  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  2c2 11327  abscabs 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261
This theorem is referenced by:  imo72b2  39149
  Copyright terms: Public domain W3C validator