Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   GIF version

Theorem imo72b2lem0 41776
Description: Lemma for imo72b2 41783. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem0.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2lem0.3 (𝜑𝐴 ∈ ℝ)
imo72b2lem0.4 (𝜑𝐵 ∈ ℝ)
imo72b2lem0.5 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
imo72b2lem0.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem0 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐺(𝑦)

Proof of Theorem imo72b2lem0
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
2 imo72b2lem0.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
31, 2ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
43recnd 11003 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℂ)
54idi 1 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℂ)
6 imo72b2lem0.2 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
7 imo72b2lem0.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
86, 7ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
98recnd 11003 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℂ)
109idi 1 . . . . 5 (𝜑 → (𝐺𝐵) ∈ ℂ)
115, 10mulcld 10995 . . . 4 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
1211abscld 15148 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ∈ ℝ)
13 imaco 6155 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1413eqcomi 2747 . . . . 5 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
15 imassrn 5980 . . . . . . 7 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1615a1i 11 . . . . . 6 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
17 absf 15049 . . . . . . . . . 10 abs:ℂ⟶ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → abs:ℂ⟶ℝ)
19 ax-resscn 10928 . . . . . . . . . 10 ℝ ⊆ ℂ
2019a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
2118, 20fssresd 6641 . . . . . . . 8 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
221, 21fco2d 41773 . . . . . . 7 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
2322frnd 6608 . . . . . 6 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
2416, 23sstrd 3931 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2514, 24eqsstrid 3969 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
26 0re 10977 . . . . . . . . . 10 0 ∈ ℝ
2726ne0ii 4271 . . . . . . . . 9 ℝ ≠ ∅
2827a1i 11 . . . . . . . 8 (𝜑 → ℝ ≠ ∅)
2928, 22wnefimgd 41772 . . . . . . 7 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3029necomd 2999 . . . . . 6 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3114a1i 11 . . . . . 6 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3230, 31neeqtrrd 3018 . . . . 5 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3332necomd 2999 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
34 1red 10976 . . . . 5 (𝜑 → 1 ∈ ℝ)
35 simpr 485 . . . . . . 7 ((𝜑𝑐 = 1) → 𝑐 = 1)
3635breq2d 5086 . . . . . 6 ((𝜑𝑐 = 1) → (𝑥𝑐𝑥 ≤ 1))
3736ralbidv 3112 . . . . 5 ((𝜑𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1))
38 imo72b2lem0.6 . . . . . 6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
391, 38extoimad 41775 . . . . 5 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)
4034, 37, 39rspcedvd 3563 . . . 4 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐)
4125, 33, 40suprcld 11938 . . 3 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
42 2re 12047 . . . 4 2 ∈ ℝ
4342a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
44 imo72b2lem0.5 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4544idi 1 . . . . . . . 8 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4645fveq2d 6778 . . . . . . 7 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) = (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))))
47 2cnd 12051 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
4847, 11mulcld 10995 . . . . . . . 8 (𝜑 → (2 · ((𝐹𝐴) · (𝐺𝐵))) ∈ ℂ)
4948abscld 15148 . . . . . . 7 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ∈ ℝ)
5046, 49eqeltrd 2839 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ∈ ℝ)
511idi 1 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
522idi 1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
537idi 1 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5452, 53readdcld 11004 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5551, 54ffvelrnd 6962 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ)
5655recnd 11003 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ)
5756abscld 15148 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ)
5852, 53resubcld 11403 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) ∈ ℝ)
5951, 58ffvelrnd 6962 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℝ)
6059recnd 11003 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℂ)
6160abscld 15148 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ ℝ)
6257, 61readdcld 11004 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ∈ ℝ)
6343, 41remulcld 11005 . . . . . 6 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
6456, 60abstrid 15168 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))))
651, 54fvco3d 6868 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵))))
6654, 22wfximgfd 41774 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
6731idi 1 . . . . . . . . . . 11 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
6866, 67eleqtrrd 2842 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
6965, 68eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7025, 33, 40, 69suprubd 11937 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
711, 58fvco3d 6868 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) = (abs‘(𝐹‘(𝐴𝐵))))
7258, 22wfximgfd 41774 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
7372, 31eleqtrrd 2842 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
7471, 73eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7525, 33, 40, 74suprubd 11937 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
7657, 61, 41, 41, 70, 75le2addd 11594 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7741recnd 11003 . . . . . . . . 9 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
78772timesd 12216 . . . . . . . 8 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7978eqcomd 2744 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8079, 63eqeltrd 2839 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
8176, 79, 62, 80leeq2d 41768 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8250, 62, 63, 64, 81letrd 11132 . . . . 5 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8382, 46, 50, 63leeq1d 41767 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
84 0le2 12075 . . . . . 6 0 ≤ 2
8584a1i 11 . . . . 5 (𝜑 → 0 ≤ 2)
863idi 1 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
878idi 1 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℝ)
8886, 87remulcld 11005 . . . . 5 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℝ)
8985, 43, 88absmulrposd 41769 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) = (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))))
9083, 89, 49, 63leeq1d 41767 . . 3 (𝜑 → (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
91 2pos 12076 . . . 4 0 < 2
9291a1i 11 . . 3 (𝜑 → 0 < 2)
9312, 41, 43, 90, 92wwlemuld 41766 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
944, 9absmuld 15166 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9594idi 1 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9693, 95, 12, 41leeq1d 41767 1 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256   class class class wbr 5074  ran crn 5590  cima 5592  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  2c2 12028  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  imo72b2  41783
  Copyright terms: Public domain W3C validator