| Step | Hyp | Ref
| Expression |
| 1 | | imo72b2lem0.1 |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 2 | | imo72b2lem0.3 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1, 2 | ffvelcdmd 7075 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
| 4 | 3 | recnd 11263 |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
| 5 | | imo72b2lem0.2 |
. . . . 5
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 6 | | imo72b2lem0.4 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 7 | 5, 6 | ffvelcdmd 7075 |
. . . 4
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℝ) |
| 8 | 7 | recnd 11263 |
. . 3
⊢ (𝜑 → (𝐺‘𝐵) ∈ ℂ) |
| 9 | 4, 8 | absmuld 15473 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) = ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵)))) |
| 10 | 4, 8 | mulcld 11255 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℂ) |
| 11 | 10 | abscld 15455 |
. . 3
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℝ) |
| 12 | | absf 15356 |
. . . . . 6
⊢
abs:ℂ⟶ℝ |
| 13 | 12 | a1i 11 |
. . . . 5
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
| 14 | 13 | fimassd 6727 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆
ℝ) |
| 15 | | imaco 6240 |
. . . . 5
⊢ ((abs
∘ 𝐹) “ ℝ)
= (abs “ (𝐹 “
ℝ)) |
| 16 | 2 | ne0d 4317 |
. . . . . 6
⊢ (𝜑 → ℝ ≠
∅) |
| 17 | | ax-resscn 11186 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 19 | 13, 18 | fssresd 6745 |
. . . . . . 7
⊢ (𝜑 → (abs ↾
ℝ):ℝ⟶ℝ) |
| 20 | 1, 19 | fco2d 44186 |
. . . . . 6
⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 21 | 16, 20 | wnefimgd 44185 |
. . . . 5
⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠
∅) |
| 22 | 15, 21 | eqnetrrid 3007 |
. . . 4
⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠
∅) |
| 23 | | 1red 11236 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
| 24 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 = 1) → 𝑐 = 1) |
| 25 | 24 | breq2d 5131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 = 1) → (𝑥 ≤ 𝑐 ↔ 𝑥 ≤ 1)) |
| 26 | 25 | ralbidv 3163 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)) |
| 27 | | imo72b2lem0.6 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) |
| 28 | 1, 27 | extoimad 44188 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1) |
| 29 | 23, 26, 28 | rspcedvd 3603 |
. . . 4
⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝑐) |
| 30 | 14, 22, 29 | suprcld 12205 |
. . 3
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℝ) |
| 31 | | 2re 12314 |
. . . 4
⊢ 2 ∈
ℝ |
| 32 | 31 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℝ) |
| 33 | | 0le2 12342 |
. . . . . 6
⊢ 0 ≤
2 |
| 34 | 33 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ≤ 2) |
| 35 | 3, 7 | remulcld 11265 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝐴) · (𝐺‘𝐵)) ∈ ℝ) |
| 36 | 34, 32, 35 | absmulrposd 44183 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) = (2 · (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))))) |
| 37 | | imo72b2lem0.5 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) |
| 38 | 37 | fveq2d 6880 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) = (abs‘(2 · ((𝐹‘𝐴) · (𝐺‘𝐵))))) |
| 39 | | 2cnd 12318 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℂ) |
| 40 | 39, 10 | mulcld 11255 |
. . . . . . . 8
⊢ (𝜑 → (2 · ((𝐹‘𝐴) · (𝐺‘𝐵))) ∈ ℂ) |
| 41 | 40 | abscld 15455 |
. . . . . . 7
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ∈ ℝ) |
| 42 | 38, 41 | eqeltrd 2834 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
| 43 | 2, 6 | readdcld 11264 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
| 44 | 1, 43 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ) |
| 45 | 44 | recnd 11263 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ) |
| 46 | 45 | abscld 15455 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ) |
| 47 | 2, 6 | resubcld 11665 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
| 48 | 1, 47 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℝ) |
| 49 | 48 | recnd 11263 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝐴 − 𝐵)) ∈ ℂ) |
| 50 | 49 | abscld 15455 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ ℝ) |
| 51 | 46, 50 | readdcld 11264 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ∈ ℝ) |
| 52 | 32, 30 | remulcld 11265 |
. . . . . 6
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) ∈ ℝ) |
| 53 | 45, 49 | abstrid 15475 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵))))) |
| 54 | 1, 43 | fvco3d 6979 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵)))) |
| 55 | 43, 20 | wfximgfd 44187 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 56 | 55, 15 | eleqtrdi 2844 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
| 57 | 54, 56 | eqeltrrd 2835 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
| 58 | 14, 22, 29, 57 | suprubd 12204 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 59 | 1, 47 | fvco3d 6979 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) = (abs‘(𝐹‘(𝐴 − 𝐵)))) |
| 60 | 47, 20 | wfximgfd 44187 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ)) |
| 61 | 60, 15 | eleqtrdi 2844 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs ∘ 𝐹)‘(𝐴 − 𝐵)) ∈ (abs “ (𝐹 “ ℝ))) |
| 62 | 59, 61 | eqeltrrd 2835 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ∈ (abs “ (𝐹 “ ℝ))) |
| 63 | 14, 22, 29, 62 | suprubd 12204 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘(𝐴 − 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 64 | 46, 50, 30, 30, 58, 63 | le2addd 11856 |
. . . . . . 7
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) + sup((abs “ (𝐹 “ ℝ)), ℝ, <
))) |
| 65 | 30 | recnd 11263 |
. . . . . . . 8
⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ,
< ) ∈ ℂ) |
| 66 | 65 | 2timesd 12484 |
. . . . . . 7
⊢ (𝜑 → (2 · sup((abs
“ (𝐹 “
ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) +
sup((abs “ (𝐹 “
ℝ)), ℝ, < ))) |
| 67 | 64, 66 | breqtrrd 5147 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 68 | 42, 51, 52, 53, 67 | letrd 11392 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 69 | 38, 68 | eqbrtrrd 5143 |
. . . 4
⊢ (𝜑 → (abs‘(2 ·
((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 70 | 36, 69 | eqbrtrrd 5143 |
. . 3
⊢ (𝜑 → (2 ·
(abs‘((𝐹‘𝐴) · (𝐺‘𝐵)))) ≤ (2 · sup((abs “
(𝐹 “ ℝ)),
ℝ, < ))) |
| 71 | | 2pos 12343 |
. . . 4
⊢ 0 <
2 |
| 72 | 71 | a1i 11 |
. . 3
⊢ (𝜑 → 0 < 2) |
| 73 | 11, 30, 32, 70, 72 | wwlemuld 44180 |
. 2
⊢ (𝜑 → (abs‘((𝐹‘𝐴) · (𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |
| 74 | 9, 73 | eqbrtrrd 5143 |
1
⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, <
)) |