Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem0 Structured version   Visualization version   GIF version

Theorem imo72b2lem0 40728
Description: Lemma for imo72b2 40737. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem0.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem0.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2lem0.3 (𝜑𝐴 ∈ ℝ)
imo72b2lem0.4 (𝜑𝐵 ∈ ℝ)
imo72b2lem0.5 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
imo72b2lem0.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
Assertion
Ref Expression
imo72b2lem0 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Distinct variable groups:   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐺(𝑦)

Proof of Theorem imo72b2lem0
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2lem0.1 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
2 imo72b2lem0.3 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
31, 2ffvelrnd 6841 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
43recnd 10663 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℂ)
54idi 1 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℂ)
6 imo72b2lem0.2 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
7 imo72b2lem0.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
86, 7ffvelrnd 6841 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
98recnd 10663 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℂ)
109idi 1 . . . . 5 (𝜑 → (𝐺𝐵) ∈ ℂ)
115, 10mulcld 10655 . . . 4 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
1211abscld 14794 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ∈ ℝ)
13 imaco 6092 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1413eqcomi 2833 . . . . 5 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
15 imassrn 5928 . . . . . . 7 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1615a1i 11 . . . . . 6 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
17 absf 14695 . . . . . . . . . 10 abs:ℂ⟶ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → abs:ℂ⟶ℝ)
19 ax-resscn 10588 . . . . . . . . . 10 ℝ ⊆ ℂ
2019a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
2118, 20fssresd 6534 . . . . . . . 8 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
221, 21fco2d 40725 . . . . . . 7 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
2322frnd 6510 . . . . . 6 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
2416, 23sstrd 3963 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2514, 24eqsstrid 4001 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
26 0re 10637 . . . . . . . . . 10 0 ∈ ℝ
2726ne0ii 4286 . . . . . . . . 9 ℝ ≠ ∅
2827a1i 11 . . . . . . . 8 (𝜑 → ℝ ≠ ∅)
2928, 22wnefimgd 40724 . . . . . . 7 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3029necomd 3069 . . . . . 6 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3114a1i 11 . . . . . 6 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3230, 31neeqtrrd 3088 . . . . 5 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3332necomd 3069 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
34 1red 10636 . . . . 5 (𝜑 → 1 ∈ ℝ)
35 simpr 488 . . . . . . 7 ((𝜑𝑐 = 1) → 𝑐 = 1)
3635breq2d 5065 . . . . . 6 ((𝜑𝑐 = 1) → (𝑥𝑐𝑥 ≤ 1))
3736ralbidv 3192 . . . . 5 ((𝜑𝑐 = 1) → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐 ↔ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1))
38 imo72b2lem0.6 . . . . . 6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
391, 38extoimad 40727 . . . . 5 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 1)
4034, 37, 39rspcedvd 3612 . . . 4 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝑐)
4125, 33, 40suprcld 11598 . . 3 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
42 2re 11706 . . . 4 2 ∈ ℝ
4342a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
44 imo72b2lem0.5 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4544idi 1 . . . . . . . 8 (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))
4645fveq2d 6663 . . . . . . 7 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) = (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))))
47 2cnd 11710 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
4847, 11mulcld 10655 . . . . . . . 8 (𝜑 → (2 · ((𝐹𝐴) · (𝐺𝐵))) ∈ ℂ)
4948abscld 14794 . . . . . . 7 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ∈ ℝ)
5046, 49eqeltrd 2916 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ∈ ℝ)
511idi 1 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
522idi 1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
537idi 1 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5452, 53readdcld 10664 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5551, 54ffvelrnd 6841 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℝ)
5655recnd 10663 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴 + 𝐵)) ∈ ℂ)
5756abscld 14794 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ ℝ)
5852, 53resubcld 11062 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) ∈ ℝ)
5951, 58ffvelrnd 6841 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℝ)
6059recnd 10663 . . . . . . . 8 (𝜑 → (𝐹‘(𝐴𝐵)) ∈ ℂ)
6160abscld 14794 . . . . . . 7 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ ℝ)
6257, 61readdcld 10664 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ∈ ℝ)
6343, 41remulcld 10665 . . . . . 6 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
6456, 60abstrid 14814 . . . . . 6 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))))
651, 54fvco3d 6750 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) = (abs‘(𝐹‘(𝐴 + 𝐵))))
6654, 22wfximgfd 40726 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
6731idi 1 . . . . . . . . . . 11 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
6866, 67eleqtrrd 2919 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴 + 𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
6965, 68eqeltrrd 2917 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7025, 33, 40, 69suprubd 11597 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴 + 𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
711, 58fvco3d 6750 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) = (abs‘(𝐹‘(𝐴𝐵))))
7258, 22wfximgfd 40726 . . . . . . . . . . 11 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ ((abs ∘ 𝐹) “ ℝ))
7372, 31eleqtrrd 2919 . . . . . . . . . 10 (𝜑 → ((abs ∘ 𝐹)‘(𝐴𝐵)) ∈ (abs “ (𝐹 “ ℝ)))
7471, 73eqeltrrd 2917 . . . . . . . . 9 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ∈ (abs “ (𝐹 “ ℝ)))
7525, 33, 40, 74suprubd 11597 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘(𝐴𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
7657, 61, 41, 41, 70, 75le2addd 11253 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7741recnd 10663 . . . . . . . . 9 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
78772timesd 11875 . . . . . . . 8 (𝜑 → (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
7978eqcomd 2830 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8079, 63eqeltrd 2916 . . . . . . 7 (𝜑 → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) + sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ∈ ℝ)
8176, 79, 62, 80leeq2d 40720 . . . . . 6 (𝜑 → ((abs‘(𝐹‘(𝐴 + 𝐵))) + (abs‘(𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8250, 62, 63, 64, 81letrd 10791 . . . . 5 (𝜑 → (abs‘((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
8382, 46, 50, 63leeq1d 40719 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
84 0le2 11734 . . . . . 6 0 ≤ 2
8584a1i 11 . . . . 5 (𝜑 → 0 ≤ 2)
863idi 1 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ ℝ)
878idi 1 . . . . . 6 (𝜑 → (𝐺𝐵) ∈ ℝ)
8886, 87remulcld 10665 . . . . 5 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℝ)
8985, 43, 88absmulrposd 40721 . . . 4 (𝜑 → (abs‘(2 · ((𝐹𝐴) · (𝐺𝐵)))) = (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))))
9083, 89, 49, 63leeq1d 40719 . . 3 (𝜑 → (2 · (abs‘((𝐹𝐴) · (𝐺𝐵)))) ≤ (2 · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
91 2pos 11735 . . . 4 0 < 2
9291a1i 11 . . 3 (𝜑 → 0 < 2)
9312, 41, 43, 90, 92wwlemuld 40718 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
944, 9absmuld 14812 . . 3 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9594idi 1 . 2 (𝜑 → (abs‘((𝐹𝐴) · (𝐺𝐵))) = ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))))
9693, 95, 12, 41leeq1d 40719 1 (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wss 3919  c0 4276   class class class wbr 5053  ran crn 5544  cima 5546  ccom 5547  wf 6340  cfv 6344  (class class class)co 7146  supcsup 8897  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  2c2 11687  abscabs 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8899  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-seq 13372  df-exp 13433  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593
This theorem is referenced by:  imo72b2  40737
  Copyright terms: Public domain W3C validator