Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moantr Structured version   Visualization version   GIF version

Theorem moantr 38365
Description: Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018.)
Assertion
Ref Expression
moantr (∃*𝑥𝜓 → ((∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒)) → ∃𝑥(𝜑𝜒)))

Proof of Theorem moantr
StepHypRef Expression
1 exancom 1861 . . . . . . 7 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
21anbi1i 624 . . . . . 6 ((∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒)) ↔ (∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒)))
32anbi2i 623 . . . . 5 ((∃*𝑥𝜓 ∧ (∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒))) ↔ (∃*𝑥𝜓 ∧ (∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒))))
4 3anass 1095 . . . . 5 ((∃*𝑥𝜓 ∧ ∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒)) ↔ (∃*𝑥𝜓 ∧ (∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒))))
53, 4bitr4i 278 . . . 4 ((∃*𝑥𝜓 ∧ (∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒))) ↔ (∃*𝑥𝜓 ∧ ∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒)))
6 mopick2 2637 . . . 4 ((∃*𝑥𝜓 ∧ ∃𝑥(𝜓𝜑) ∧ ∃𝑥(𝜓𝜒)) → ∃𝑥(𝜓𝜑𝜒))
75, 6sylbi 217 . . 3 ((∃*𝑥𝜓 ∧ (∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒))) → ∃𝑥(𝜓𝜑𝜒))
8 3anass 1095 . . . . 5 ((𝜓𝜑𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
98exbii 1848 . . . 4 (∃𝑥(𝜓𝜑𝜒) ↔ ∃𝑥(𝜓 ∧ (𝜑𝜒)))
10 exsimpr 1869 . . . 4 (∃𝑥(𝜓 ∧ (𝜑𝜒)) → ∃𝑥(𝜑𝜒))
119, 10sylbi 217 . . 3 (∃𝑥(𝜓𝜑𝜒) → ∃𝑥(𝜑𝜒))
127, 11syl 17 . 2 ((∃*𝑥𝜓 ∧ (∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒))) → ∃𝑥(𝜑𝜒))
13 impexp 450 . 2 (((∃*𝑥𝜓 ∧ (∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒))) → ∃𝑥(𝜑𝜒)) ↔ (∃*𝑥𝜓 → ((∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒)) → ∃𝑥(𝜑𝜒))))
1412, 13mpbi 230 1 (∃*𝑥𝜓 → ((∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜓𝜒)) → ∃𝑥(𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1779  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-nf 1784  df-mo 2540
This theorem is referenced by:  trcoss  38483
  Copyright terms: Public domain W3C validator