Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss Structured version   Visualization version   GIF version

Theorem trcoss 35167
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
trcoss (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑢,𝑅,𝑥   𝑧,𝑅,𝑢   𝑦,𝑢,𝑥   𝑦,𝑧
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem trcoss
StepHypRef Expression
1 moantr 35062 . . . . 5 (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
2 brcoss 35121 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)))
32el2v 3416 . . . . . 6 (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
4 brcoss 35121 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
54el2v 3416 . . . . . 6 (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧))
63, 5anbi12i 617 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
7 brcoss 35121 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
87el2v 3416 . . . . 5 (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧))
91, 6, 83imtr4g 288 . . . 4 (∃*𝑢 𝑢𝑅𝑦 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109alrimiv 1886 . . 3 (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1110alimi 1774 . 2 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1211alrimiv 1886 1 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1505  wex 1742  ∃*wmo 2545  Vcvv 3409   class class class wbr 4923  ccoss 34897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rab 3091  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4924  df-opab 4986  df-coss 35104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator