Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss Structured version   Visualization version   GIF version

Theorem trcoss 37954
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
trcoss (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑢,𝑅,𝑥   𝑧,𝑅,𝑢   𝑦,𝑢,𝑥   𝑦,𝑧
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem trcoss
StepHypRef Expression
1 moantr 37836 . . . . 5 (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
2 brcoss 37903 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)))
32el2v 3479 . . . . . 6 (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
4 brcoss 37903 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
54el2v 3479 . . . . . 6 (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧))
63, 5anbi12i 627 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
7 brcoss 37903 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
87el2v 3479 . . . . 5 (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧))
91, 6, 83imtr4g 296 . . . 4 (∃*𝑢 𝑢𝑅𝑦 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109alrimiv 1923 . . 3 (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1110alimi 1806 . 2 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1211alrimiv 1923 1 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  ∃*wmo 2528  Vcvv 3471   class class class wbr 5148  ccoss 37648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-coss 37883
This theorem is referenced by:  disjim  38253
  Copyright terms: Public domain W3C validator