| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trcoss | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
| Ref | Expression |
|---|---|
| trcoss | ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moantr 38387 | . . . . 5 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
| 2 | brcoss 38454 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
| 3 | 2 | el2v 3471 | . . . . . 6 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 4 | brcoss 38454 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) | |
| 5 | 4 | el2v 3471 | . . . . . 6 ⊢ (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) |
| 6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) |
| 7 | brcoss 38454 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
| 8 | 7 | el2v 3471 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧)) |
| 9 | 1, 6, 8 | 3imtr4g 296 | . . . 4 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 10 | 9 | alrimiv 1927 | . . 3 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 11 | 10 | alimi 1811 | . 2 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 12 | 11 | alrimiv 1927 | 1 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 Vcvv 3464 class class class wbr 5124 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-coss 38434 |
| This theorem is referenced by: disjim 38804 |
| Copyright terms: Public domain | W3C validator |