Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trcoss | Structured version Visualization version GIF version |
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
trcoss | ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moantr 36494 | . . . . 5 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
2 | brcoss 36554 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
3 | 2 | el2v 3440 | . . . . . 6 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
4 | brcoss 36554 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) | |
5 | 4 | el2v 3440 | . . . . . 6 ⊢ (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) |
6 | 3, 5 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) |
7 | brcoss 36554 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
8 | 7 | el2v 3440 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧)) |
9 | 1, 6, 8 | 3imtr4g 296 | . . . 4 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
10 | 9 | alrimiv 1930 | . . 3 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
11 | 10 | alimi 1814 | . 2 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
12 | 11 | alrimiv 1930 | 1 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 Vcvv 3432 class class class wbr 5074 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-coss 36537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |