![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trcoss | Structured version Visualization version GIF version |
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
trcoss | ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moantr 38269 | . . . . 5 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
2 | brcoss 38336 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
3 | 2 | el2v 3490 | . . . . . 6 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
4 | brcoss 38336 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) | |
5 | 4 | el2v 3490 | . . . . . 6 ⊢ (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) |
6 | 3, 5 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) |
7 | brcoss 38336 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
8 | 7 | el2v 3490 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧)) |
9 | 1, 6, 8 | 3imtr4g 296 | . . . 4 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
10 | 9 | alrimiv 1926 | . . 3 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
11 | 10 | alimi 1809 | . 2 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
12 | 11 | alrimiv 1926 | 1 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∃*wmo 2535 Vcvv 3482 class class class wbr 5169 ≀ ccoss 38084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-coss 38316 |
This theorem is referenced by: disjim 38686 |
Copyright terms: Public domain | W3C validator |