![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trcoss | Structured version Visualization version GIF version |
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
trcoss | ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moantr 36871 | . . . . 5 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
2 | brcoss 36939 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦))) | |
3 | 2 | el2v 3452 | . . . . . 6 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
4 | brcoss 36939 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) | |
5 | 4 | el2v 3452 | . . . . . 6 ⊢ (𝑦 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧)) |
6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦 ∧ 𝑢𝑅𝑧))) |
7 | brcoss 36939 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧))) | |
8 | 7 | el2v 3452 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑧)) |
9 | 1, 6, 8 | 3imtr4g 296 | . . . 4 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
10 | 9 | alrimiv 1931 | . . 3 ⊢ (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
11 | 10 | alimi 1814 | . 2 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
12 | 11 | alrimiv 1931 | 1 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∃*wmo 2533 Vcvv 3444 class class class wbr 5106 ≀ ccoss 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-coss 36919 |
This theorem is referenced by: disjim 37289 |
Copyright terms: Public domain | W3C validator |