Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss Structured version   Visualization version   GIF version

Theorem trcoss 37856
Description: Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
trcoss (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑢,𝑅,𝑥   𝑧,𝑅,𝑢   𝑦,𝑢,𝑥   𝑦,𝑧
Allowed substitution hint:   𝑅(𝑦)

Proof of Theorem trcoss
StepHypRef Expression
1 moantr 37737 . . . . 5 (∃*𝑢 𝑢𝑅𝑦 → ((∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)) → ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
2 brcoss 37805 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)))
32el2v 3474 . . . . . 6 (𝑥𝑅𝑦 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
4 brcoss 37805 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
54el2v 3474 . . . . . 6 (𝑦𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧))
63, 5anbi12i 626 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ∧ ∃𝑢(𝑢𝑅𝑦𝑢𝑅𝑧)))
7 brcoss 37805 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧)))
87el2v 3474 . . . . 5 (𝑥𝑅𝑧 ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑧))
91, 6, 83imtr4g 296 . . . 4 (∃*𝑢 𝑢𝑅𝑦 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109alrimiv 1922 . . 3 (∃*𝑢 𝑢𝑅𝑦 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1110alimi 1805 . 2 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1211alrimiv 1922 1 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wex 1773  ∃*wmo 2524  Vcvv 3466   class class class wbr 5139  ccoss 37547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-coss 37785
This theorem is referenced by:  disjim  38155
  Copyright terms: Public domain W3C validator