| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidgaw | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. Special case of brabga 5472. Version of brabidga 38402 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.) |
| Ref | Expression |
|---|---|
| brabidgaw.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabidgaw | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brabidgaw.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | breqi 5095 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 3 | df-br 5090 | . 2 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 4 | opabidw 5462 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 |
| This theorem is referenced by: inxpxrn 38435 |
| Copyright terms: Public domain | W3C validator |