Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabidgaw Structured version   Visualization version   GIF version

Theorem brabidgaw 37037
Description: The law of concretion for a binary relation. Special case of brabga 5527. Version of brabidga 37038 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by Gino Giotto, 2-Apr-2024.)
Hypothesis
Ref Expression
brabidgaw.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabidgaw (𝑥𝑅𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabidgaw
StepHypRef Expression
1 brabidgaw.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21breqi 5147 . 2 (𝑥𝑅𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
3 df-br 5142 . 2 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opabidw 5517 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
52, 3, 43bitri 296 1 (𝑥𝑅𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  cop 4628   class class class wbr 5141  {copab 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-opab 5204
This theorem is referenced by:  inxpxrn  37068
  Copyright terms: Public domain W3C validator