Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabidgaw Structured version   Visualization version   GIF version

Theorem brabidgaw 38401
Description: The law of concretion for a binary relation. Special case of brabga 5472. Version of brabidga 38402 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.)
Hypothesis
Ref Expression
brabidgaw.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabidgaw (𝑥𝑅𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabidgaw
StepHypRef Expression
1 brabidgaw.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21breqi 5095 . 2 (𝑥𝑅𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
3 df-br 5090 . 2 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opabidw 5462 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
52, 3, 43bitri 297 1 (𝑥𝑅𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  cop 4579   class class class wbr 5089  {copab 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152
This theorem is referenced by:  inxpxrn  38435
  Copyright terms: Public domain W3C validator