Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidgaw | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. Special case of brabga 5447. Version of brabidga 36496 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by Gino Giotto, 2-Apr-2024.) |
Ref | Expression |
---|---|
brabidgaw.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabidgaw | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabidgaw.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | breqi 5080 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
3 | df-br 5075 | . 2 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | opabidw 5437 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 |
This theorem is referenced by: inxpxrn 36521 |
Copyright terms: Public domain | W3C validator |