Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabidgaw Structured version   Visualization version   GIF version

Theorem brabidgaw 38354
Description: The law of concretion for a binary relation. Special case of brabga 5497. Version of brabidga 38355 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.)
Hypothesis
Ref Expression
brabidgaw.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabidgaw (𝑥𝑅𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabidgaw
StepHypRef Expression
1 brabidgaw.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21breqi 5116 . 2 (𝑥𝑅𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
3 df-br 5111 . 2 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opabidw 5487 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
52, 3, 43bitri 297 1 (𝑥𝑅𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173
This theorem is referenced by:  inxpxrn  38388
  Copyright terms: Public domain W3C validator