![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidgaw | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. Special case of brabga 5534. Version of brabidga 37539 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by Gino Giotto, 2-Apr-2024.) |
Ref | Expression |
---|---|
brabidgaw.1 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
brabidgaw | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabidgaw.1 | . . 3 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | 1 | breqi 5154 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦) |
3 | df-br 5149 | . 2 ⊢ (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
4 | opabidw 5524 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) | |
5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 |
This theorem is referenced by: inxpxrn 37569 |
Copyright terms: Public domain | W3C validator |