| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brabidgaw | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. Special case of brabga 5497. Version of brabidga 38355 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.) |
| Ref | Expression |
|---|---|
| brabidgaw.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabidgaw | ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brabidgaw.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | breqi 5116 | . 2 ⊢ (𝑥𝑅𝑦 ↔ 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 3 | df-br 5111 | . 2 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 4 | opabidw 5487 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (𝑥𝑅𝑦 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 |
| This theorem is referenced by: inxpxrn 38388 |
| Copyright terms: Public domain | W3C validator |