| Step | Hyp | Ref
| Expression |
| 1 | | isthincd2lem1.5 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 2 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥𝐻𝑦) = (𝑧𝐻𝑦)) |
| 3 | 2 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑧𝐻𝑦))) |
| 4 | 3 | mobidv 2549 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑦))) |
| 5 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑧𝐻𝑦) = (𝑧𝐻𝑤)) |
| 6 | 5 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑓 ∈ (𝑧𝐻𝑦) ↔ 𝑓 ∈ (𝑧𝐻𝑤))) |
| 7 | 6 | mobidv 2549 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (∃*𝑓 𝑓 ∈ (𝑧𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤))) |
| 8 | 4, 7 | cbvral2vw 3241 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤)) |
| 9 | 1, 8 | sylib 218 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤)) |
| 10 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑧𝐻𝑤) = (𝑋𝐻𝑤)) |
| 11 | 10 | eleq2d 2827 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (𝑓 ∈ (𝑧𝐻𝑤) ↔ 𝑓 ∈ (𝑋𝐻𝑤))) |
| 12 | 11 | mobidv 2549 |
. . . . 5
⊢ (𝑧 = 𝑋 → (∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤))) |
| 13 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑓 ∈ (𝑋𝐻𝑤) |
| 14 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑓 𝑘 ∈ (𝑋𝐻𝑤) |
| 15 | | eleq1w 2824 |
. . . . . . 7
⊢ (𝑓 = 𝑘 → (𝑓 ∈ (𝑋𝐻𝑤) ↔ 𝑘 ∈ (𝑋𝐻𝑤))) |
| 16 | 13, 14, 15 | cbvmow 2603 |
. . . . . 6
⊢
(∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑤)) |
| 17 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑤 = 𝑌 → (𝑋𝐻𝑤) = (𝑋𝐻𝑌)) |
| 18 | 17 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑤 = 𝑌 → (𝑘 ∈ (𝑋𝐻𝑤) ↔ 𝑘 ∈ (𝑋𝐻𝑌))) |
| 19 | 18 | mobidv 2549 |
. . . . . 6
⊢ (𝑤 = 𝑌 → (∃*𝑘 𝑘 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌))) |
| 20 | 16, 19 | bitrid 283 |
. . . . 5
⊢ (𝑤 = 𝑌 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌))) |
| 21 | | isthincd2lem1.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 22 | | eqidd 2738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 = 𝑋) → 𝐵 = 𝐵) |
| 23 | | isthincd2lem1.2 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 24 | 12, 20, 21, 22, 23 | rspc2vd 3947 |
. . . 4
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤) → ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌))) |
| 25 | 9, 24 | mpd 15 |
. . 3
⊢ (𝜑 → ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌)) |
| 26 | | moel 3402 |
. . 3
⊢
(∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌) ↔ ∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙) |
| 27 | 25, 26 | sylib 218 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙) |
| 28 | | eqeq1 2741 |
. . 3
⊢ (𝑘 = 𝐹 → (𝑘 = 𝑙 ↔ 𝐹 = 𝑙)) |
| 29 | | eqeq2 2749 |
. . 3
⊢ (𝑙 = 𝐺 → (𝐹 = 𝑙 ↔ 𝐹 = 𝐺)) |
| 30 | | isthincd2lem1.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 31 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑘 = 𝐹) → (𝑋𝐻𝑌) = (𝑋𝐻𝑌)) |
| 32 | | isthincd2lem1.4 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) |
| 33 | 28, 29, 30, 31, 32 | rspc2vd 3947 |
. 2
⊢ (𝜑 → (∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙 → 𝐹 = 𝐺)) |
| 34 | 27, 33 | mpd 15 |
1
⊢ (𝜑 → 𝐹 = 𝐺) |