Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd2lem1 Structured version   Visualization version   GIF version

Theorem isthincd2lem1 49586
Description: Lemma for isthincd2 49598 and thincmo2 49587. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd2lem1.1 (𝜑𝑋𝐵)
isthincd2lem1.2 (𝜑𝑌𝐵)
isthincd2lem1.3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isthincd2lem1.4 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
isthincd2lem1.5 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
Assertion
Ref Expression
isthincd2lem1 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐵,𝑥   𝑓,𝐻,𝑥,𝑦   𝑓,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑓)   𝐹(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑓)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑓)

Proof of Theorem isthincd2lem1
Dummy variables 𝑤 𝑧 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd2lem1.5 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
2 oveq1 7362 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐻𝑦) = (𝑧𝐻𝑦))
32eleq2d 2819 . . . . . . 7 (𝑥 = 𝑧 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑧𝐻𝑦)))
43mobidv 2546 . . . . . 6 (𝑥 = 𝑧 → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑦)))
5 oveq2 7363 . . . . . . . 8 (𝑦 = 𝑤 → (𝑧𝐻𝑦) = (𝑧𝐻𝑤))
65eleq2d 2819 . . . . . . 7 (𝑦 = 𝑤 → (𝑓 ∈ (𝑧𝐻𝑦) ↔ 𝑓 ∈ (𝑧𝐻𝑤)))
76mobidv 2546 . . . . . 6 (𝑦 = 𝑤 → (∃*𝑓 𝑓 ∈ (𝑧𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤)))
84, 7cbvral2vw 3215 . . . . 5 (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑧𝐵𝑤𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤))
91, 8sylib 218 . . . 4 (𝜑 → ∀𝑧𝐵𝑤𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤))
10 oveq1 7362 . . . . . . 7 (𝑧 = 𝑋 → (𝑧𝐻𝑤) = (𝑋𝐻𝑤))
1110eleq2d 2819 . . . . . 6 (𝑧 = 𝑋 → (𝑓 ∈ (𝑧𝐻𝑤) ↔ 𝑓 ∈ (𝑋𝐻𝑤)))
1211mobidv 2546 . . . . 5 (𝑧 = 𝑋 → (∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤)))
13 nfv 1915 . . . . . . 7 𝑘 𝑓 ∈ (𝑋𝐻𝑤)
14 nfv 1915 . . . . . . 7 𝑓 𝑘 ∈ (𝑋𝐻𝑤)
15 eleq1w 2816 . . . . . . 7 (𝑓 = 𝑘 → (𝑓 ∈ (𝑋𝐻𝑤) ↔ 𝑘 ∈ (𝑋𝐻𝑤)))
1613, 14, 15cbvmow 2600 . . . . . 6 (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑤))
17 oveq2 7363 . . . . . . . 8 (𝑤 = 𝑌 → (𝑋𝐻𝑤) = (𝑋𝐻𝑌))
1817eleq2d 2819 . . . . . . 7 (𝑤 = 𝑌 → (𝑘 ∈ (𝑋𝐻𝑤) ↔ 𝑘 ∈ (𝑋𝐻𝑌)))
1918mobidv 2546 . . . . . 6 (𝑤 = 𝑌 → (∃*𝑘 𝑘 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌)))
2016, 19bitrid 283 . . . . 5 (𝑤 = 𝑌 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑤) ↔ ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌)))
21 isthincd2lem1.1 . . . . 5 (𝜑𝑋𝐵)
22 eqidd 2734 . . . . 5 ((𝜑𝑧 = 𝑋) → 𝐵 = 𝐵)
23 isthincd2lem1.2 . . . . 5 (𝜑𝑌𝐵)
2412, 20, 21, 22, 23rspc2vd 3894 . . . 4 (𝜑 → (∀𝑧𝐵𝑤𝐵 ∃*𝑓 𝑓 ∈ (𝑧𝐻𝑤) → ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌)))
259, 24mpd 15 . . 3 (𝜑 → ∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌))
26 moel 3367 . . 3 (∃*𝑘 𝑘 ∈ (𝑋𝐻𝑌) ↔ ∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙)
2725, 26sylib 218 . 2 (𝜑 → ∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙)
28 eqeq1 2737 . . 3 (𝑘 = 𝐹 → (𝑘 = 𝑙𝐹 = 𝑙))
29 eqeq2 2745 . . 3 (𝑙 = 𝐺 → (𝐹 = 𝑙𝐹 = 𝐺))
30 isthincd2lem1.3 . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
31 eqidd 2734 . . 3 ((𝜑𝑘 = 𝐹) → (𝑋𝐻𝑌) = (𝑋𝐻𝑌))
32 isthincd2lem1.4 . . 3 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
3328, 29, 30, 31, 32rspc2vd 3894 . 2 (𝜑 → (∀𝑘 ∈ (𝑋𝐻𝑌)∀𝑙 ∈ (𝑋𝐻𝑌)𝑘 = 𝑙𝐹 = 𝐺))
3427, 33mpd 15 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ∃*wmo 2535  wral 3048  (class class class)co 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358
This theorem is referenced by:  thincmo2  49587  isthincd2  49598
  Copyright terms: Public domain W3C validator