![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcbas2 | Structured version Visualization version GIF version |
Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
mndtcbas2 | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | . . . 4 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
2 | mndtcbas.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
3 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
4 | 1, 2, 3 | mndtcbas 48740 | . . 3 ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) |
5 | eumo 2575 | . . 3 ⊢ (∃!𝑥 𝑥 ∈ 𝐵 → ∃*𝑥 𝑥 ∈ 𝐵) | |
6 | moel 3406 | . . . 4 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
7 | 6 | biimpi 216 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
8 | 4, 5, 7 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
9 | mndtchom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | mndtchom.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | eqeq12 2751 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 = 𝑦 ↔ 𝑋 = 𝑌)) | |
12 | 11 | rspc2gv 3643 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌)) |
13 | 9, 10, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌)) |
14 | 8, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ∃*wmo 2535 ∃!weu 2565 ∀wral 3063 ‘cfv 6579 Basecbs 17264 Mndcmnd 18778 MndToCatcmndtc 48736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 ax-cnex 11245 ax-resscn 11246 ax-1cn 11247 ax-icn 11248 ax-addcl 11249 ax-addrcl 11250 ax-mulcl 11251 ax-mulrcl 11252 ax-mulcom 11253 ax-addass 11254 ax-mulass 11255 ax-distr 11256 ax-i2m1 11257 ax-1ne0 11258 ax-1rid 11259 ax-rnegex 11260 ax-rrecex 11261 ax-cnre 11262 ax-pre-lttri 11263 ax-pre-lttrn 11264 ax-pre-ltadd 11265 ax-pre-mulgt0 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-tp 4659 df-op 4661 df-ot 4663 df-uni 4938 df-iun 5027 df-br 5177 df-opab 5239 df-mpt 5260 df-tr 5294 df-id 5604 df-eprel 5610 df-po 5618 df-so 5619 df-fr 5661 df-we 5663 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-pred 6338 df-ord 6404 df-on 6405 df-lim 6406 df-suc 6407 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-riota 7410 df-ov 7457 df-oprab 7458 df-mpo 7459 df-om 7909 df-1st 8035 df-2nd 8036 df-frecs 8327 df-wrecs 8358 df-recs 8432 df-rdg 8471 df-1o 8527 df-er 8768 df-en 9009 df-dom 9010 df-sdom 9011 df-fin 9012 df-pnf 11331 df-mnf 11332 df-xr 11333 df-ltxr 11334 df-le 11335 df-sub 11527 df-neg 11528 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-7 12366 df-8 12367 df-9 12368 df-n0 12559 df-z 12645 df-dec 12764 df-uz 12909 df-fz 13573 df-struct 17200 df-slot 17235 df-ndx 17247 df-base 17265 df-hom 17341 df-cco 17342 df-mndtc 48737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |