Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcbas2 | Structured version Visualization version GIF version |
Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
mndtcbas.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtcbas.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcbas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
mndtcbas2 | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | . . . 4 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
2 | mndtcbas.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
3 | mndtcbas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
4 | 1, 2, 3 | mndtcbas 46786 | . . 3 ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) |
5 | eumo 2576 | . . 3 ⊢ (∃!𝑥 𝑥 ∈ 𝐵 → ∃*𝑥 𝑥 ∈ 𝐵) | |
6 | moel 3371 | . . . 4 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
7 | 6 | biimpi 215 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
8 | 4, 5, 7 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
9 | mndtchom.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | mndtchom.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | eqeq12 2753 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 = 𝑦 ↔ 𝑋 = 𝑌)) | |
12 | 11 | rspc2gv 3578 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌)) |
13 | 9, 10, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌)) |
14 | 8, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃*wmo 2536 ∃!weu 2566 ∀wral 3061 ‘cfv 6480 Basecbs 17010 Mndcmnd 18483 MndToCatcmndtc 46782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-struct 16946 df-slot 16981 df-ndx 16993 df-base 17011 df-hom 17084 df-cco 17085 df-mndtc 46783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |