MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm7 Structured version   Visualization version   GIF version

Theorem isprm7 16042
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. This version of isprm5 16041 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
isprm7 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm7
StepHypRef Expression
1 isprm5 16041 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
2 prmz 16009 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
32zred 12075 . . . . . . 7 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
4 0red 10633 . . . . . . . 8 (𝑧 ∈ ℙ → 0 ∈ ℝ)
5 1red 10631 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 ∈ ℝ)
6 0lt1 11151 . . . . . . . . . 10 0 < 1
76a1i 11 . . . . . . . . 9 (𝑧 ∈ ℙ → 0 < 1)
8 prmgt1 16031 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 < 𝑧)
94, 5, 3, 7, 8lttrd 10790 . . . . . . . 8 (𝑧 ∈ ℙ → 0 < 𝑧)
104, 3, 9ltled 10777 . . . . . . 7 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
113, 10jca 515 . . . . . 6 (𝑧 ∈ ℙ → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧))
12 eluzelre 12242 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
13 0red 10633 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ∈ ℝ)
14 2re 11699 . . . . . . . . 9 2 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ∈ ℝ)
16 0le2 11727 . . . . . . . . 9 0 ≤ 2
1716a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ≤ 2)
18 eluzle 12244 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
1913, 15, 12, 17, 18letrd 10786 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2012, 19jca 515 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃))
21 resqcl 13486 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧↑2) ∈ ℝ)
22 sqge0 13497 . . . . . . . . . 10 (𝑧 ∈ ℝ → 0 ≤ (𝑧↑2))
2321, 22jca 515 . . . . . . . . 9 (𝑧 ∈ ℝ → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
2423adantr 484 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
25 sqrtle 14612 . . . . . . . 8 ((((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
2624, 25sylan 583 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
27 sqrtsq 14621 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → (√‘(𝑧↑2)) = 𝑧)
2827breq1d 5040 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
2928adantr 484 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
3026, 29bitrd 282 . . . . . 6 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3111, 20, 30syl2anr 599 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3231imbi1d 345 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3332ralbidva 3161 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3433pm5.32i 578 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
35 impexp 454 . . . . 5 (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3612, 19resqrtcld 14769 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → (√‘𝑃) ∈ ℝ)
3736flcld 13163 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℤ)
3837, 2anim12i 615 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3938adantr 484 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
40 prmuz2 16030 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
41 eluzle 12244 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
4240, 41syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
4342ad2antlr 726 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 2 ≤ 𝑧)
44 flge 13170 . . . . . . . . . . . . 13 (((√‘𝑃) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4536, 2, 44syl2an 598 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4645biimpa 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ≤ (⌊‘(√‘𝑃)))
47 2z 12002 . . . . . . . . . . . 12 2 ∈ ℤ
48 elfz4 12895 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
4947, 48mp3anl1 1452 . . . . . . . . . . 11 ((((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5039, 43, 46, 49syl12anc 835 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5150anasss 470 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
52 simprl 770 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ℙ)
5351, 52elind 4121 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ))
5453ex 416 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
55 elin 3897 . . . . . . . . 9 (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ↔ (𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ))
56 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℤ)
5756zred 12075 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℝ)
5857adantl 485 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ∈ ℝ)
59 reflcl 13161 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ∈ ℝ)
6036, 59syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℝ)
6160adantr 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ∈ ℝ)
6236adantr 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (√‘𝑃) ∈ ℝ)
63 elfzle2 12906 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
6463adantl 485 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
65 flle 13164 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6636, 65syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6766adantr 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6858, 61, 62, 64, 67letrd 10786 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (√‘𝑃))
6968ex 416 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (√‘𝑃)))
7069anim1d 613 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
7155, 70syl5bi 245 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
72 ancom 464 . . . . . . . 8 ((𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ) ↔ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)))
7371, 72syl6ib 254 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))))
7454, 73impbid 215 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) ↔ 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
7574imbi1d 345 . . . . 5 (𝑃 ∈ (ℤ‘2) → (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7635, 75bitr3id 288 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7776ralbidv2 3160 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
7877pm5.32i 578 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
791, 34, 783bitri 300 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111  wral 3106  cin 3880   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  2c2 11680  cz 11969  cuz 12231  ...cfz 12885  cfl 13155  cexp 13425  csqrt 14584  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  fmtno4prm  44092  31prm  44114
  Copyright terms: Public domain W3C validator