MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm7 Structured version   Visualization version   GIF version

Theorem isprm7 15627
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. This version of isprm5 15626 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
isprm7 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm7
StepHypRef Expression
1 isprm5 15626 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
2 prmz 15596 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
32zred 11684 . . . . . . 7 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
4 0red 10243 . . . . . . . 8 (𝑧 ∈ ℙ → 0 ∈ ℝ)
5 1red 10257 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 ∈ ℝ)
6 0lt1 10752 . . . . . . . . . 10 0 < 1
76a1i 11 . . . . . . . . 9 (𝑧 ∈ ℙ → 0 < 1)
8 prmgt1 15616 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 < 𝑧)
94, 5, 3, 7, 8lttrd 10400 . . . . . . . 8 (𝑧 ∈ ℙ → 0 < 𝑧)
104, 3, 9ltled 10387 . . . . . . 7 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
113, 10jca 501 . . . . . 6 (𝑧 ∈ ℙ → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧))
12 eluzelre 11899 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
13 0red 10243 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ∈ ℝ)
14 2re 11292 . . . . . . . . 9 2 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ∈ ℝ)
16 0le2 11313 . . . . . . . . 9 0 ≤ 2
1716a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ≤ 2)
18 eluzle 11901 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
1913, 15, 12, 17, 18letrd 10396 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2012, 19jca 501 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃))
21 resqcl 13138 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧↑2) ∈ ℝ)
22 sqge0 13147 . . . . . . . . . 10 (𝑧 ∈ ℝ → 0 ≤ (𝑧↑2))
2321, 22jca 501 . . . . . . . . 9 (𝑧 ∈ ℝ → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
2423adantr 466 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
25 sqrtle 14209 . . . . . . . 8 ((((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
2624, 25sylan 569 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
27 sqrtsq 14218 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → (√‘(𝑧↑2)) = 𝑧)
2827breq1d 4796 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
2928adantr 466 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
3026, 29bitrd 268 . . . . . 6 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3111, 20, 30syl2anr 584 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3231imbi1d 330 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3332ralbidva 3134 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3433pm5.32i 564 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
35 impexp 437 . . . . 5 (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3612, 19resqrtcld 14364 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → (√‘𝑃) ∈ ℝ)
3736flcld 12807 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℤ)
3837, 2anim12i 600 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3938adantr 466 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
40 prmuz2 15615 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
41 eluzle 11901 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
4240, 41syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
4342ad2antlr 706 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 2 ≤ 𝑧)
44 flge 12814 . . . . . . . . . . . . 13 (((√‘𝑃) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4536, 2, 44syl2an 583 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4645biimpa 462 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ≤ (⌊‘(√‘𝑃)))
47 2z 11611 . . . . . . . . . . . 12 2 ∈ ℤ
48 elfz4 12542 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
4947, 48mp3anl1 1566 . . . . . . . . . . 11 ((((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5039, 43, 46, 49syl12anc 1474 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5150anasss 457 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
52 simprl 754 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ℙ)
5351, 52elind 3949 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ))
5453ex 397 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
55 elin 3947 . . . . . . . . 9 (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ↔ (𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ))
56 elfzelz 12549 . . . . . . . . . . . . . 14 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℤ)
5756zred 11684 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℝ)
5857adantl 467 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ∈ ℝ)
59 reflcl 12805 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ∈ ℝ)
6036, 59syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℝ)
6160adantr 466 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ∈ ℝ)
6236adantr 466 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (√‘𝑃) ∈ ℝ)
63 elfzle2 12552 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
6463adantl 467 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
65 flle 12808 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6636, 65syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6766adantr 466 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6858, 61, 62, 64, 67letrd 10396 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (√‘𝑃))
6968ex 397 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (√‘𝑃)))
7069anim1d 598 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
7155, 70syl5bi 232 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
72 ancom 452 . . . . . . . 8 ((𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ) ↔ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)))
7371, 72syl6ib 241 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))))
7454, 73impbid 202 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) ↔ 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
7574imbi1d 330 . . . . 5 (𝑃 ∈ (ℤ‘2) → (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7635, 75syl5bbr 274 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7776ralbidv2 3133 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
7877pm5.32i 564 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
791, 34, 783bitri 286 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wcel 2145  wral 3061  cin 3722   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   < clt 10276  cle 10277  2c2 11272  cz 11579  cuz 11888  ...cfz 12533  cfl 12799  cexp 13067  csqrt 14181  cdvds 15189  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fl 12801  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-prm 15593
This theorem is referenced by:  fmtno4prm  42015  31prm  42040
  Copyright terms: Public domain W3C validator