MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm7 Structured version   Visualization version   GIF version

Theorem isprm7 15753
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. This version of isprm5 15752 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
isprm7 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm7
StepHypRef Expression
1 isprm5 15752 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
2 prmz 15723 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
32zred 11772 . . . . . . 7 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
4 0red 10332 . . . . . . . 8 (𝑧 ∈ ℙ → 0 ∈ ℝ)
5 1red 10329 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 ∈ ℝ)
6 0lt1 10842 . . . . . . . . . 10 0 < 1
76a1i 11 . . . . . . . . 9 (𝑧 ∈ ℙ → 0 < 1)
8 prmgt1 15743 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 < 𝑧)
94, 5, 3, 7, 8lttrd 10488 . . . . . . . 8 (𝑧 ∈ ℙ → 0 < 𝑧)
104, 3, 9ltled 10475 . . . . . . 7 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
113, 10jca 508 . . . . . 6 (𝑧 ∈ ℙ → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧))
12 eluzelre 11941 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
13 0red 10332 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ∈ ℝ)
14 2re 11387 . . . . . . . . 9 2 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ∈ ℝ)
16 0le2 11422 . . . . . . . . 9 0 ≤ 2
1716a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ≤ 2)
18 eluzle 11943 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
1913, 15, 12, 17, 18letrd 10484 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2012, 19jca 508 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃))
21 resqcl 13185 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧↑2) ∈ ℝ)
22 sqge0 13194 . . . . . . . . . 10 (𝑧 ∈ ℝ → 0 ≤ (𝑧↑2))
2321, 22jca 508 . . . . . . . . 9 (𝑧 ∈ ℝ → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
2423adantr 473 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
25 sqrtle 14342 . . . . . . . 8 ((((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
2624, 25sylan 576 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
27 sqrtsq 14351 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → (√‘(𝑧↑2)) = 𝑧)
2827breq1d 4853 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
2928adantr 473 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
3026, 29bitrd 271 . . . . . 6 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3111, 20, 30syl2anr 591 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3231imbi1d 333 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3332ralbidva 3166 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3433pm5.32i 571 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
35 impexp 442 . . . . 5 (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3612, 19resqrtcld 14497 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → (√‘𝑃) ∈ ℝ)
3736flcld 12854 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℤ)
3837, 2anim12i 607 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3938adantr 473 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
40 prmuz2 15742 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
41 eluzle 11943 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
4240, 41syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
4342ad2antlr 719 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 2 ≤ 𝑧)
44 flge 12861 . . . . . . . . . . . . 13 (((√‘𝑃) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4536, 2, 44syl2an 590 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4645biimpa 469 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ≤ (⌊‘(√‘𝑃)))
47 2z 11699 . . . . . . . . . . . 12 2 ∈ ℤ
48 elfz4 12589 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
4947, 48mp3anl1 1580 . . . . . . . . . . 11 ((((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5039, 43, 46, 49syl12anc 866 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5150anasss 459 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
52 simprl 788 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ℙ)
5351, 52elind 3996 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ))
5453ex 402 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
55 elin 3994 . . . . . . . . 9 (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ↔ (𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ))
56 elfzelz 12596 . . . . . . . . . . . . . 14 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℤ)
5756zred 11772 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℝ)
5857adantl 474 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ∈ ℝ)
59 reflcl 12852 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ∈ ℝ)
6036, 59syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℝ)
6160adantr 473 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ∈ ℝ)
6236adantr 473 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (√‘𝑃) ∈ ℝ)
63 elfzle2 12599 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
6463adantl 474 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
65 flle 12855 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6636, 65syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6766adantr 473 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6858, 61, 62, 64, 67letrd 10484 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (√‘𝑃))
6968ex 402 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (√‘𝑃)))
7069anim1d 605 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
7155, 70syl5bi 234 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
72 ancom 453 . . . . . . . 8 ((𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ) ↔ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)))
7371, 72syl6ib 243 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))))
7454, 73impbid 204 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) ↔ 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
7574imbi1d 333 . . . . 5 (𝑃 ∈ (ℤ‘2) → (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7635, 75syl5bbr 277 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7776ralbidv2 3165 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
7877pm5.32i 571 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
791, 34, 783bitri 289 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wcel 2157  wral 3089  cin 3768   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  1c1 10225   < clt 10363  cle 10364  2c2 11368  cz 11666  cuz 11930  ...cfz 12580  cfl 12846  cexp 13114  csqrt 14314  cdvds 15319  cprime 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fl 12848  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-dvds 15320  df-prm 15720
This theorem is referenced by:  fmtno4prm  42265  31prm  42290
  Copyright terms: Public domain W3C validator