Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm7 Structured version   Visualization version   GIF version

Theorem isprm7 16044
 Description: One need only check prime divisors of 𝑃 up to √𝑃 in order to ensure primality. This version of isprm5 16043 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
isprm7 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm7
StepHypRef Expression
1 isprm5 16043 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
2 prmz 16011 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
32zred 12079 . . . . . . 7 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
4 0red 10636 . . . . . . . 8 (𝑧 ∈ ℙ → 0 ∈ ℝ)
5 1red 10634 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 ∈ ℝ)
6 0lt1 11154 . . . . . . . . . 10 0 < 1
76a1i 11 . . . . . . . . 9 (𝑧 ∈ ℙ → 0 < 1)
8 prmgt1 16033 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 < 𝑧)
94, 5, 3, 7, 8lttrd 10793 . . . . . . . 8 (𝑧 ∈ ℙ → 0 < 𝑧)
104, 3, 9ltled 10780 . . . . . . 7 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
113, 10jca 514 . . . . . 6 (𝑧 ∈ ℙ → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧))
12 eluzelre 12246 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
13 0red 10636 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ∈ ℝ)
14 2re 11703 . . . . . . . . 9 2 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ∈ ℝ)
16 0le2 11731 . . . . . . . . 9 0 ≤ 2
1716a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ≤ 2)
18 eluzle 12248 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
1913, 15, 12, 17, 18letrd 10789 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2012, 19jca 514 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃))
21 resqcl 13482 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧↑2) ∈ ℝ)
22 sqge0 13493 . . . . . . . . . 10 (𝑧 ∈ ℝ → 0 ≤ (𝑧↑2))
2321, 22jca 514 . . . . . . . . 9 (𝑧 ∈ ℝ → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
2423adantr 483 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
25 sqrtle 14612 . . . . . . . 8 ((((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
2624, 25sylan 582 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
27 sqrtsq 14621 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → (√‘(𝑧↑2)) = 𝑧)
2827breq1d 5067 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
2928adantr 483 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
3026, 29bitrd 281 . . . . . 6 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3111, 20, 30syl2anr 598 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3231imbi1d 344 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3332ralbidva 3194 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3433pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
35 impexp 453 . . . . 5 (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3612, 19resqrtcld 14769 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → (√‘𝑃) ∈ ℝ)
3736flcld 13160 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℤ)
3837, 2anim12i 614 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3938adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
40 prmuz2 16032 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
41 eluzle 12248 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
4240, 41syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
4342ad2antlr 725 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 2 ≤ 𝑧)
44 flge 13167 . . . . . . . . . . . . 13 (((√‘𝑃) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4536, 2, 44syl2an 597 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4645biimpa 479 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ≤ (⌊‘(√‘𝑃)))
47 2z 12006 . . . . . . . . . . . 12 2 ∈ ℤ
48 elfz4 12893 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
4947, 48mp3anl1 1449 . . . . . . . . . . 11 ((((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5039, 43, 46, 49syl12anc 834 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5150anasss 469 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
52 simprl 769 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ℙ)
5351, 52elind 4169 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ))
5453ex 415 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
55 elin 4167 . . . . . . . . 9 (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ↔ (𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ))
56 elfzelz 12900 . . . . . . . . . . . . . 14 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℤ)
5756zred 12079 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℝ)
5857adantl 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ∈ ℝ)
59 reflcl 13158 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ∈ ℝ)
6036, 59syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℝ)
6160adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ∈ ℝ)
6236adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (√‘𝑃) ∈ ℝ)
63 elfzle2 12903 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
6463adantl 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
65 flle 13161 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6636, 65syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6766adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6858, 61, 62, 64, 67letrd 10789 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (√‘𝑃))
6968ex 415 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (√‘𝑃)))
7069anim1d 612 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
7155, 70syl5bi 244 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
72 ancom 463 . . . . . . . 8 ((𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ) ↔ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)))
7371, 72syl6ib 253 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))))
7454, 73impbid 214 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) ↔ 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
7574imbi1d 344 . . . . 5 (𝑃 ∈ (ℤ‘2) → (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7635, 75syl5bbr 287 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7776ralbidv2 3193 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
7877pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
791, 34, 783bitri 299 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∈ wcel 2108  ∀wral 3136   ∩ cin 3933   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148  ℝcr 10528  0cc0 10529  1c1 10530   < clt 10667   ≤ cle 10668  2c2 11684  ℤcz 11973  ℤ≥cuz 12235  ...cfz 12884  ⌊cfl 13152  ↑cexp 13421  √csqrt 14584   ∥ cdvds 15599  ℙcprime 16007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fl 13154  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008 This theorem is referenced by:  fmtno4prm  43727  31prm  43750
 Copyright terms: Public domain W3C validator