Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blometi | Structured version Visualization version GIF version |
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
blometi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
blometi.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
blometi.8 | ⊢ 𝐶 = (IndMet‘𝑈) |
blometi.d | ⊢ 𝐷 = (IndMet‘𝑊) |
blometi.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
blometi.7 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
blometi.u | ⊢ 𝑈 ∈ NrmCVec |
blometi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
blometi | ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) ≤ ((𝑁‘𝑇) · (𝑃𝐶𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blometi.u | . . . . 5 ⊢ 𝑈 ∈ NrmCVec | |
2 | blometi.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2738 | . . . . . 6 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
4 | 2, 3 | nvmcl 28909 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) |
5 | 1, 4 | mp3an1 1446 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) |
6 | eqid 2738 | . . . . 5 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
7 | eqid 2738 | . . . . 5 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
8 | blometi.6 | . . . . 5 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
9 | blometi.7 | . . . . 5 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
10 | blometi.w | . . . . 5 ⊢ 𝑊 ∈ NrmCVec | |
11 | 2, 6, 7, 8, 9, 1, 10 | nmblolbi 29063 | . . . 4 ⊢ ((𝑇 ∈ 𝐵 ∧ (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
12 | 5, 11 | sylan2 592 | . . 3 ⊢ ((𝑇 ∈ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
13 | 12 | 3impb 1113 | . 2 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
14 | blometi.2 | . . . . . . . 8 ⊢ 𝑌 = (BaseSet‘𝑊) | |
15 | 2, 14, 9 | blof 29048 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
16 | 1, 10, 15 | mp3an12 1449 | . . . . . 6 ⊢ (𝑇 ∈ 𝐵 → 𝑇:𝑋⟶𝑌) |
17 | 16 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋) → (𝑇‘𝑃) ∈ 𝑌) |
18 | 17 | 3adant3 1130 | . . . 4 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑃) ∈ 𝑌) |
19 | 16 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑄) ∈ 𝑌) |
20 | 19 | 3adant2 1129 | . . . 4 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑄) ∈ 𝑌) |
21 | eqid 2738 | . . . . . 6 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
22 | blometi.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑊) | |
23 | 14, 21, 7, 22 | imsdval 28949 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑃) ∈ 𝑌 ∧ (𝑇‘𝑄) ∈ 𝑌) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
24 | 10, 23 | mp3an1 1446 | . . . 4 ⊢ (((𝑇‘𝑃) ∈ 𝑌 ∧ (𝑇‘𝑄) ∈ 𝑌) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
25 | 18, 20, 24 | syl2anc 583 | . . 3 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
26 | eqid 2738 | . . . . . . 7 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
27 | 26, 9 | bloln 29047 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
28 | 1, 10, 27 | mp3an12 1449 | . . . . 5 ⊢ (𝑇 ∈ 𝐵 → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
29 | 2, 3, 21, 26 | lnosub 29022 | . . . . . . . 8 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
30 | 1, 29 | mp3anl1 1453 | . . . . . . 7 ⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
31 | 10, 30 | mpanl1 696 | . . . . . 6 ⊢ ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
32 | 31 | 3impb 1113 | . . . . 5 ⊢ ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
33 | 28, 32 | syl3an1 1161 | . . . 4 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
34 | 33 | fveq2d 6760 | . . 3 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
35 | 25, 34 | eqtr4d 2781 | . 2 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
36 | blometi.8 | . . . . . 6 ⊢ 𝐶 = (IndMet‘𝑈) | |
37 | 2, 3, 6, 36 | imsdval 28949 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
38 | 1, 37 | mp3an1 1446 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
39 | 38 | 3adant1 1128 | . . 3 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
40 | 39 | oveq2d 7271 | . 2 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑁‘𝑇) · (𝑃𝐶𝑄)) = ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
41 | 13, 35, 40 | 3brtr4d 5102 | 1 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) ≤ ((𝑁‘𝑇) · (𝑃𝐶𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 · cmul 10807 ≤ cle 10941 NrmCVeccnv 28847 BaseSetcba 28849 −𝑣 cnsb 28852 normCVcnmcv 28853 IndMetcims 28854 LnOp clno 29003 normOpOLD cnmoo 29004 BLnOp cblo 29005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-lno 29007 df-nmoo 29008 df-blo 29009 df-0o 29010 |
This theorem is referenced by: blocni 29068 |
Copyright terms: Public domain | W3C validator |