MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blometi Structured version   Visualization version   GIF version

Theorem blometi 30835
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blometi.1 𝑋 = (BaseSet‘𝑈)
blometi.2 𝑌 = (BaseSet‘𝑊)
blometi.8 𝐶 = (IndMet‘𝑈)
blometi.d 𝐷 = (IndMet‘𝑊)
blometi.6 𝑁 = (𝑈 normOpOLD 𝑊)
blometi.7 𝐵 = (𝑈 BLnOp 𝑊)
blometi.u 𝑈 ∈ NrmCVec
blometi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blometi ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))

Proof of Theorem blometi
StepHypRef Expression
1 blometi.u . . . . 5 𝑈 ∈ NrmCVec
2 blometi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2740 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
42, 3nvmcl 30678 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
51, 4mp3an1 1448 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
6 eqid 2740 . . . . 5 (normCV𝑈) = (normCV𝑈)
7 eqid 2740 . . . . 5 (normCV𝑊) = (normCV𝑊)
8 blometi.6 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
9 blometi.7 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 blometi.w . . . . 5 𝑊 ∈ NrmCVec
112, 6, 7, 8, 9, 1, 10nmblolbi 30832 . . . 4 ((𝑇𝐵 ∧ (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
125, 11sylan2 592 . . 3 ((𝑇𝐵 ∧ (𝑃𝑋𝑄𝑋)) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
13123impb 1115 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
14 blometi.2 . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
152, 14, 9blof 30817 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋𝑌)
161, 10, 15mp3an12 1451 . . . . . 6 (𝑇𝐵𝑇:𝑋𝑌)
1716ffvelcdmda 7118 . . . . 5 ((𝑇𝐵𝑃𝑋) → (𝑇𝑃) ∈ 𝑌)
18173adant3 1132 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑃) ∈ 𝑌)
1916ffvelcdmda 7118 . . . . 5 ((𝑇𝐵𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
20193adant2 1131 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
21 eqid 2740 . . . . . 6 ( −𝑣𝑊) = ( −𝑣𝑊)
22 blometi.d . . . . . 6 𝐷 = (IndMet‘𝑊)
2314, 21, 7, 22imsdval 30718 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2410, 23mp3an1 1448 . . . 4 (((𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2518, 20, 24syl2anc 583 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
26 eqid 2740 . . . . . . 7 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
2726, 9bloln 30816 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
281, 10, 27mp3an12 1451 . . . . 5 (𝑇𝐵𝑇 ∈ (𝑈 LnOp 𝑊))
292, 3, 21, 26lnosub 30791 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
301, 29mp3anl1 1455 . . . . . . 7 (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3110, 30mpanl1 699 . . . . . 6 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
32313impb 1115 . . . . 5 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3328, 32syl3an1 1163 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3433fveq2d 6924 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
3525, 34eqtr4d 2783 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))))
36 blometi.8 . . . . . 6 𝐶 = (IndMet‘𝑈)
372, 3, 6, 36imsdval 30718 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
381, 37mp3an1 1448 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
39383adant1 1130 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
4039oveq2d 7464 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑁𝑇) · (𝑃𝐶𝑄)) = ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
4113, 35, 403brtr4d 5198 1 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448   · cmul 11189  cle 11325  NrmCVeccnv 30616  BaseSetcba 30618  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623   LnOp clno 30772   normOpOLD cnmoo 30773   BLnOp cblo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779
This theorem is referenced by:  blocni  30837
  Copyright terms: Public domain W3C validator