Proof of Theorem blometi
Step | Hyp | Ref
| Expression |
1 | | blometi.u |
. . . . 5
⊢ 𝑈 ∈ NrmCVec |
2 | | blometi.1 |
. . . . . 6
⊢ 𝑋 = (BaseSet‘𝑈) |
3 | | eqid 2738 |
. . . . . 6
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
4 | 2, 3 | nvmcl 29008 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) |
5 | 1, 4 | mp3an1 1447 |
. . . 4
⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) |
6 | | eqid 2738 |
. . . . 5
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
7 | | eqid 2738 |
. . . . 5
⊢
(normCV‘𝑊) = (normCV‘𝑊) |
8 | | blometi.6 |
. . . . 5
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
9 | | blometi.7 |
. . . . 5
⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
10 | | blometi.w |
. . . . 5
⊢ 𝑊 ∈ NrmCVec |
11 | 2, 6, 7, 8, 9, 1, 10 | nmblolbi 29162 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ (𝑃( −𝑣 ‘𝑈)𝑄) ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
12 | 5, 11 | sylan2 593 |
. . 3
⊢ ((𝑇 ∈ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
13 | 12 | 3impb 1114 |
. 2
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) ≤ ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
14 | | blometi.2 |
. . . . . . . 8
⊢ 𝑌 = (BaseSet‘𝑊) |
15 | 2, 14, 9 | blof 29147 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
16 | 1, 10, 15 | mp3an12 1450 |
. . . . . 6
⊢ (𝑇 ∈ 𝐵 → 𝑇:𝑋⟶𝑌) |
17 | 16 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋) → (𝑇‘𝑃) ∈ 𝑌) |
18 | 17 | 3adant3 1131 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑃) ∈ 𝑌) |
19 | 16 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑄) ∈ 𝑌) |
20 | 19 | 3adant2 1130 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘𝑄) ∈ 𝑌) |
21 | | eqid 2738 |
. . . . . 6
⊢ (
−𝑣 ‘𝑊) = ( −𝑣
‘𝑊) |
22 | | blometi.d |
. . . . . 6
⊢ 𝐷 = (IndMet‘𝑊) |
23 | 14, 21, 7, 22 | imsdval 29048 |
. . . . 5
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑃) ∈ 𝑌 ∧ (𝑇‘𝑄) ∈ 𝑌) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
24 | 10, 23 | mp3an1 1447 |
. . . 4
⊢ (((𝑇‘𝑃) ∈ 𝑌 ∧ (𝑇‘𝑄) ∈ 𝑌) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
25 | 18, 20, 24 | syl2anc 584 |
. . 3
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
26 | | eqid 2738 |
. . . . . . 7
⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) |
27 | 26, 9 | bloln 29146 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
28 | 1, 10, 27 | mp3an12 1450 |
. . . . 5
⊢ (𝑇 ∈ 𝐵 → 𝑇 ∈ (𝑈 LnOp 𝑊)) |
29 | 2, 3, 21, 26 | lnosub 29121 |
. . . . . . . 8
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
30 | 1, 29 | mp3anl1 1454 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
31 | 10, 30 | mpanl1 697 |
. . . . . 6
⊢ ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
32 | 31 | 3impb 1114 |
. . . . 5
⊢ ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
33 | 28, 32 | syl3an1 1162 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)) = ((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄))) |
34 | 33 | fveq2d 6778 |
. . 3
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄))) = ((normCV‘𝑊)‘((𝑇‘𝑃)( −𝑣 ‘𝑊)(𝑇‘𝑄)))) |
35 | 25, 34 | eqtr4d 2781 |
. 2
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) = ((normCV‘𝑊)‘(𝑇‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
36 | | blometi.8 |
. . . . . 6
⊢ 𝐶 = (IndMet‘𝑈) |
37 | 2, 3, 6, 36 | imsdval 29048 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
38 | 1, 37 | mp3an1 1447 |
. . . 4
⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
39 | 38 | 3adant1 1129 |
. . 3
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐶𝑄) = ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄))) |
40 | 39 | oveq2d 7291 |
. 2
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑁‘𝑇) · (𝑃𝐶𝑄)) = ((𝑁‘𝑇) · ((normCV‘𝑈)‘(𝑃( −𝑣 ‘𝑈)𝑄)))) |
41 | 13, 35, 40 | 3brtr4d 5106 |
1
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) ≤ ((𝑁‘𝑇) · (𝑃𝐶𝑄))) |