MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blometi Structured version   Visualization version   GIF version

Theorem blometi 30716
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blometi.1 𝑋 = (BaseSet‘𝑈)
blometi.2 𝑌 = (BaseSet‘𝑊)
blometi.8 𝐶 = (IndMet‘𝑈)
blometi.d 𝐷 = (IndMet‘𝑊)
blometi.6 𝑁 = (𝑈 normOpOLD 𝑊)
blometi.7 𝐵 = (𝑈 BLnOp 𝑊)
blometi.u 𝑈 ∈ NrmCVec
blometi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blometi ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))

Proof of Theorem blometi
StepHypRef Expression
1 blometi.u . . . . 5 𝑈 ∈ NrmCVec
2 blometi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2734 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
42, 3nvmcl 30559 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
51, 4mp3an1 1449 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
6 eqid 2734 . . . . 5 (normCV𝑈) = (normCV𝑈)
7 eqid 2734 . . . . 5 (normCV𝑊) = (normCV𝑊)
8 blometi.6 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
9 blometi.7 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 blometi.w . . . . 5 𝑊 ∈ NrmCVec
112, 6, 7, 8, 9, 1, 10nmblolbi 30713 . . . 4 ((𝑇𝐵 ∧ (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
125, 11sylan2 593 . . 3 ((𝑇𝐵 ∧ (𝑃𝑋𝑄𝑋)) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
13123impb 1114 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
14 blometi.2 . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
152, 14, 9blof 30698 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋𝑌)
161, 10, 15mp3an12 1452 . . . . . 6 (𝑇𝐵𝑇:𝑋𝑌)
1716ffvelcdmda 7070 . . . . 5 ((𝑇𝐵𝑃𝑋) → (𝑇𝑃) ∈ 𝑌)
18173adant3 1132 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑃) ∈ 𝑌)
1916ffvelcdmda 7070 . . . . 5 ((𝑇𝐵𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
20193adant2 1131 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
21 eqid 2734 . . . . . 6 ( −𝑣𝑊) = ( −𝑣𝑊)
22 blometi.d . . . . . 6 𝐷 = (IndMet‘𝑊)
2314, 21, 7, 22imsdval 30599 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2410, 23mp3an1 1449 . . . 4 (((𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2518, 20, 24syl2anc 584 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
26 eqid 2734 . . . . . . 7 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
2726, 9bloln 30697 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
281, 10, 27mp3an12 1452 . . . . 5 (𝑇𝐵𝑇 ∈ (𝑈 LnOp 𝑊))
292, 3, 21, 26lnosub 30672 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
301, 29mp3anl1 1456 . . . . . . 7 (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3110, 30mpanl1 700 . . . . . 6 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
32313impb 1114 . . . . 5 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3328, 32syl3an1 1163 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3433fveq2d 6876 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
3525, 34eqtr4d 2772 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))))
36 blometi.8 . . . . . 6 𝐶 = (IndMet‘𝑈)
372, 3, 6, 36imsdval 30599 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
381, 37mp3an1 1449 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
39383adant1 1130 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
4039oveq2d 7415 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑁𝑇) · (𝑃𝐶𝑄)) = ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
4113, 35, 403brtr4d 5148 1 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5116  wf 6523  cfv 6527  (class class class)co 7399   · cmul 11126  cle 11262  NrmCVeccnv 30497  BaseSetcba 30499  𝑣 cnsb 30502  normCVcnmcv 30503  IndMetcims 30504   LnOp clno 30653   normOpOLD cnmoo 30654   BLnOp cblo 30655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-grpo 30406  df-gid 30407  df-ginv 30408  df-gdiv 30409  df-ablo 30458  df-vc 30472  df-nv 30505  df-va 30508  df-ba 30509  df-sm 30510  df-0v 30511  df-vs 30512  df-nmcv 30513  df-ims 30514  df-lno 30657  df-nmoo 30658  df-blo 30659  df-0o 30660
This theorem is referenced by:  blocni  30718
  Copyright terms: Public domain W3C validator