Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > mdsymlem1 | Structured version Visualization version GIF version |
Description: Lemma for mdsymi 30359. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdsymlem1.1 | ⊢ 𝐴 ∈ Cℋ |
mdsymlem1.2 | ⊢ 𝐵 ∈ Cℋ |
mdsymlem1.3 | ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) |
Ref | Expression |
---|---|
mdsymlem1 | ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsymlem1.1 | . . . . . . 7 ⊢ 𝐴 ∈ Cℋ | |
2 | chub2 29456 | . . . . . . 7 ⊢ ((𝑝 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝑝 ⊆ (𝐴 ∨ℋ 𝑝)) | |
3 | 1, 2 | mpan2 691 | . . . . . 6 ⊢ (𝑝 ∈ Cℋ → 𝑝 ⊆ (𝐴 ∨ℋ 𝑝)) |
4 | mdsymlem1.3 | . . . . . 6 ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) | |
5 | 3, 4 | sseqtrrdi 3938 | . . . . 5 ⊢ (𝑝 ∈ Cℋ → 𝑝 ⊆ 𝐶) |
6 | mdsymlem1.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Cℋ | |
7 | 1, 6 | chjcomi 29416 | . . . . . . 7 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
8 | 7 | sseq2i 3916 | . . . . . 6 ⊢ (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) ↔ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴)) |
9 | 8 | biimpi 219 | . . . . 5 ⊢ (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑝 ⊆ (𝐵 ∨ℋ 𝐴)) |
10 | 5, 9 | anim12i 616 | . . . 4 ⊢ ((𝑝 ∈ Cℋ ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑝 ⊆ 𝐶 ∧ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴))) |
11 | ssin 4131 | . . . 4 ⊢ ((𝑝 ⊆ 𝐶 ∧ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴)) ↔ 𝑝 ⊆ (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
12 | 10, 11 | sylib 221 | . . 3 ⊢ ((𝑝 ∈ Cℋ ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑝 ⊆ (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
13 | 12 | ad2ant2rl 749 | . 2 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
14 | chjcl 29305 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑝 ∈ Cℋ ) → (𝐴 ∨ℋ 𝑝) ∈ Cℋ ) | |
15 | 1, 14 | mpan 690 | . . . . . . . 8 ⊢ (𝑝 ∈ Cℋ → (𝐴 ∨ℋ 𝑝) ∈ Cℋ ) |
16 | 4, 15 | eqeltrid 2838 | . . . . . . 7 ⊢ (𝑝 ∈ Cℋ → 𝐶 ∈ Cℋ ) |
17 | 16 | adantr 484 | . . . . . 6 ⊢ ((𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴) → 𝐶 ∈ Cℋ ) |
18 | chub1 29455 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑝 ∈ Cℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝑝)) | |
19 | 1, 18 | mpan 690 | . . . . . . . . 9 ⊢ (𝑝 ∈ Cℋ → 𝐴 ⊆ (𝐴 ∨ℋ 𝑝)) |
20 | 19, 4 | sseqtrrdi 3938 | . . . . . . . 8 ⊢ (𝑝 ∈ Cℋ → 𝐴 ⊆ 𝐶) |
21 | 20 | anim2i 620 | . . . . . . 7 ⊢ ((𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) |
22 | 21 | ancoms 462 | . . . . . 6 ⊢ ((𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴) → (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) |
23 | dmdi 30250 | . . . . . . . 8 ⊢ (((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
24 | 6, 23 | mp3anl1 1456 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
25 | 1, 24 | mpanl1 700 | . . . . . 6 ⊢ ((𝐶 ∈ Cℋ ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
26 | 17, 22, 25 | syl2anc 587 | . . . . 5 ⊢ ((𝑝 ∈ Cℋ ∧ 𝐵 𝑀ℋ* 𝐴) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
27 | 26 | adantlr 715 | . . . 4 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀ℋ* 𝐴) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
28 | incom 4101 | . . . . . . 7 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
29 | 28 | oveq1i 7193 | . . . . . 6 ⊢ ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = ((𝐵 ∩ 𝐶) ∨ℋ 𝐴) |
30 | chincl 29447 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ∩ 𝐶) ∈ Cℋ ) | |
31 | 6, 30 | mpan 690 | . . . . . . . 8 ⊢ (𝐶 ∈ Cℋ → (𝐵 ∩ 𝐶) ∈ Cℋ ) |
32 | chlejb1 29460 | . . . . . . . . 9 ⊢ (((𝐵 ∩ 𝐶) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ((𝐵 ∩ 𝐶) ⊆ 𝐴 ↔ ((𝐵 ∩ 𝐶) ∨ℋ 𝐴) = 𝐴)) | |
33 | 1, 32 | mpan2 691 | . . . . . . . 8 ⊢ ((𝐵 ∩ 𝐶) ∈ Cℋ → ((𝐵 ∩ 𝐶) ⊆ 𝐴 ↔ ((𝐵 ∩ 𝐶) ∨ℋ 𝐴) = 𝐴)) |
34 | 16, 31, 33 | 3syl 18 | . . . . . . 7 ⊢ (𝑝 ∈ Cℋ → ((𝐵 ∩ 𝐶) ⊆ 𝐴 ↔ ((𝐵 ∩ 𝐶) ∨ℋ 𝐴) = 𝐴)) |
35 | 34 | biimpa 480 | . . . . . 6 ⊢ ((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) → ((𝐵 ∩ 𝐶) ∨ℋ 𝐴) = 𝐴) |
36 | 29, 35 | syl5eq 2786 | . . . . 5 ⊢ ((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐴) |
37 | 36 | adantr 484 | . . . 4 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀ℋ* 𝐴) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐴) |
38 | 27, 37 | eqtr3d 2776 | . . 3 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀ℋ* 𝐴) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐴) |
39 | 38 | adantrr 717 | . 2 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐴) |
40 | 13, 39 | sseqtrd 3927 | 1 ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3852 ⊆ wss 3853 class class class wbr 5040 (class class class)co 7183 Cℋ cch 28877 ∨ℋ chj 28881 𝑀ℋ* cdmd 28915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-inf2 9190 ax-cc 9948 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 ax-pre-sup 10706 ax-addf 10707 ax-mulf 10708 ax-hilex 28947 ax-hfvadd 28948 ax-hvcom 28949 ax-hvass 28950 ax-hv0cl 28951 ax-hvaddid 28952 ax-hfvmul 28953 ax-hvmulid 28954 ax-hvmulass 28955 ax-hvdistr1 28956 ax-hvdistr2 28957 ax-hvmul0 28958 ax-hfi 29027 ax-his1 29030 ax-his2 29031 ax-his3 29032 ax-his4 29033 ax-hcompl 29150 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-isom 6359 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-of 7438 df-om 7613 df-1st 7727 df-2nd 7728 df-supp 7870 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-2o 8145 df-oadd 8148 df-omul 8149 df-er 8333 df-map 8452 df-pm 8453 df-ixp 8521 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-fsupp 8920 df-fi 8961 df-sup 8992 df-inf 8993 df-oi 9060 df-card 9454 df-acn 9457 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-5 11795 df-6 11796 df-7 11797 df-8 11798 df-9 11799 df-n0 11990 df-z 12076 df-dec 12193 df-uz 12338 df-q 12444 df-rp 12486 df-xneg 12603 df-xadd 12604 df-xmul 12605 df-ioo 12838 df-ico 12840 df-icc 12841 df-fz 12995 df-fzo 13138 df-fl 13266 df-seq 13474 df-exp 13535 df-hash 13796 df-cj 14561 df-re 14562 df-im 14563 df-sqrt 14697 df-abs 14698 df-clim 14948 df-rlim 14949 df-sum 15149 df-struct 16601 df-ndx 16602 df-slot 16603 df-base 16605 df-sets 16606 df-ress 16607 df-plusg 16694 df-mulr 16695 df-starv 16696 df-sca 16697 df-vsca 16698 df-ip 16699 df-tset 16700 df-ple 16701 df-ds 16703 df-unif 16704 df-hom 16705 df-cco 16706 df-rest 16812 df-topn 16813 df-0g 16831 df-gsum 16832 df-topgen 16833 df-pt 16834 df-prds 16837 df-xrs 16891 df-qtop 16896 df-imas 16897 df-xps 16899 df-mre 16973 df-mrc 16974 df-acs 16976 df-mgm 17981 df-sgrp 18030 df-mnd 18041 df-submnd 18086 df-mulg 18356 df-cntz 18578 df-cmn 19039 df-psmet 20222 df-xmet 20223 df-met 20224 df-bl 20225 df-mopn 20226 df-fbas 20227 df-fg 20228 df-cnfld 20231 df-top 21658 df-topon 21675 df-topsp 21697 df-bases 21710 df-cld 21783 df-ntr 21784 df-cls 21785 df-nei 21862 df-cn 21991 df-cnp 21992 df-lm 21993 df-haus 22079 df-tx 22326 df-hmeo 22519 df-fil 22610 df-fm 22702 df-flim 22703 df-flf 22704 df-xms 23086 df-ms 23087 df-tms 23088 df-cfil 24020 df-cau 24021 df-cmet 24022 df-grpo 28441 df-gid 28442 df-ginv 28443 df-gdiv 28444 df-ablo 28493 df-vc 28507 df-nv 28540 df-va 28543 df-ba 28544 df-sm 28545 df-0v 28546 df-vs 28547 df-nmcv 28548 df-ims 28549 df-dip 28649 df-ssp 28670 df-ph 28761 df-cbn 28811 df-hnorm 28916 df-hba 28917 df-hvsub 28919 df-hlim 28920 df-hcau 28921 df-sh 29155 df-ch 29169 df-oc 29200 df-ch0 29201 df-shs 29256 df-chj 29258 df-dmd 30229 |
This theorem is referenced by: mdsymlem2 30352 |
Copyright terms: Public domain | W3C validator |