HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem1 Structured version   Visualization version   GIF version

Theorem mdsymlem1 32422
Description: Lemma for mdsymi 32430. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem1
StepHypRef Expression
1 mdsymlem1.1 . . . . . . 7 𝐴C
2 chub2 31527 . . . . . . 7 ((𝑝C𝐴C ) → 𝑝 ⊆ (𝐴 𝑝))
31, 2mpan2 691 . . . . . 6 (𝑝C𝑝 ⊆ (𝐴 𝑝))
4 mdsymlem1.3 . . . . . 6 𝐶 = (𝐴 𝑝)
53, 4sseqtrrdi 4025 . . . . 5 (𝑝C𝑝𝐶)
6 mdsymlem1.2 . . . . . . . 8 𝐵C
71, 6chjcomi 31487 . . . . . . 7 (𝐴 𝐵) = (𝐵 𝐴)
87sseq2i 4013 . . . . . 6 (𝑝 ⊆ (𝐴 𝐵) ↔ 𝑝 ⊆ (𝐵 𝐴))
98biimpi 216 . . . . 5 (𝑝 ⊆ (𝐴 𝐵) → 𝑝 ⊆ (𝐵 𝐴))
105, 9anim12i 613 . . . 4 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → (𝑝𝐶𝑝 ⊆ (𝐵 𝐴)))
11 ssin 4239 . . . 4 ((𝑝𝐶𝑝 ⊆ (𝐵 𝐴)) ↔ 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1210, 11sylib 218 . . 3 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1312ad2ant2rl 749 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
14 chjcl 31376 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
151, 14mpan 690 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
164, 15eqeltrid 2845 . . . . . . 7 (𝑝C𝐶C )
1716adantr 480 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → 𝐶C )
18 chub1 31526 . . . . . . . . . 10 ((𝐴C𝑝C ) → 𝐴 ⊆ (𝐴 𝑝))
191, 18mpan 690 . . . . . . . . 9 (𝑝C𝐴 ⊆ (𝐴 𝑝))
2019, 4sseqtrrdi 4025 . . . . . . . 8 (𝑝C𝐴𝐶)
2120anim2i 617 . . . . . . 7 ((𝐵 𝑀* 𝐴𝑝C ) → (𝐵 𝑀* 𝐴𝐴𝐶))
2221ancoms 458 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → (𝐵 𝑀* 𝐴𝐴𝐶))
23 dmdi 32321 . . . . . . . 8 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
246, 23mp3anl1 1457 . . . . . . 7 (((𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
251, 24mpanl1 700 . . . . . 6 ((𝐶C ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2617, 22, 25syl2anc 584 . . . . 5 ((𝑝C𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2726adantlr 715 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
28 incom 4209 . . . . . . 7 (𝐶𝐵) = (𝐵𝐶)
2928oveq1i 7441 . . . . . 6 ((𝐶𝐵) ∨ 𝐴) = ((𝐵𝐶) ∨ 𝐴)
30 chincl 31518 . . . . . . . . 9 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
316, 30mpan 690 . . . . . . . 8 (𝐶C → (𝐵𝐶) ∈ C )
32 chlejb1 31531 . . . . . . . . 9 (((𝐵𝐶) ∈ C𝐴C ) → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
331, 32mpan2 691 . . . . . . . 8 ((𝐵𝐶) ∈ C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3416, 31, 333syl 18 . . . . . . 7 (𝑝C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3534biimpa 476 . . . . . 6 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐵𝐶) ∨ 𝐴) = 𝐴)
3629, 35eqtrid 2789 . . . . 5 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3736adantr 480 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3827, 37eqtr3d 2779 . . 3 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
3938adantrr 717 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
4013, 39sseqtrd 4020 1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951   class class class wbr 5143  (class class class)co 7431   C cch 30948   chj 30952   𝑀* cdmd 30986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-chj 31329  df-dmd 32300
This theorem is referenced by:  mdsymlem2  32423
  Copyright terms: Public domain W3C validator