HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem1 Structured version   Visualization version   GIF version

Theorem mdsymlem1 31924
Description: Lemma for mdsymi 31932. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem1
StepHypRef Expression
1 mdsymlem1.1 . . . . . . 7 𝐴C
2 chub2 31029 . . . . . . 7 ((𝑝C𝐴C ) → 𝑝 ⊆ (𝐴 𝑝))
31, 2mpan2 688 . . . . . 6 (𝑝C𝑝 ⊆ (𝐴 𝑝))
4 mdsymlem1.3 . . . . . 6 𝐶 = (𝐴 𝑝)
53, 4sseqtrrdi 4033 . . . . 5 (𝑝C𝑝𝐶)
6 mdsymlem1.2 . . . . . . . 8 𝐵C
71, 6chjcomi 30989 . . . . . . 7 (𝐴 𝐵) = (𝐵 𝐴)
87sseq2i 4011 . . . . . 6 (𝑝 ⊆ (𝐴 𝐵) ↔ 𝑝 ⊆ (𝐵 𝐴))
98biimpi 215 . . . . 5 (𝑝 ⊆ (𝐴 𝐵) → 𝑝 ⊆ (𝐵 𝐴))
105, 9anim12i 612 . . . 4 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → (𝑝𝐶𝑝 ⊆ (𝐵 𝐴)))
11 ssin 4230 . . . 4 ((𝑝𝐶𝑝 ⊆ (𝐵 𝐴)) ↔ 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1210, 11sylib 217 . . 3 ((𝑝C𝑝 ⊆ (𝐴 𝐵)) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
1312ad2ant2rl 746 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝 ⊆ (𝐶 ∩ (𝐵 𝐴)))
14 chjcl 30878 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
151, 14mpan 687 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
164, 15eqeltrid 2836 . . . . . . 7 (𝑝C𝐶C )
1716adantr 480 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → 𝐶C )
18 chub1 31028 . . . . . . . . . 10 ((𝐴C𝑝C ) → 𝐴 ⊆ (𝐴 𝑝))
191, 18mpan 687 . . . . . . . . 9 (𝑝C𝐴 ⊆ (𝐴 𝑝))
2019, 4sseqtrrdi 4033 . . . . . . . 8 (𝑝C𝐴𝐶)
2120anim2i 616 . . . . . . 7 ((𝐵 𝑀* 𝐴𝑝C ) → (𝐵 𝑀* 𝐴𝐴𝐶))
2221ancoms 458 . . . . . 6 ((𝑝C𝐵 𝑀* 𝐴) → (𝐵 𝑀* 𝐴𝐴𝐶))
23 dmdi 31823 . . . . . . . 8 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
246, 23mp3anl1 1454 . . . . . . 7 (((𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
251, 24mpanl1 697 . . . . . 6 ((𝐶C ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2617, 22, 25syl2anc 583 . . . . 5 ((𝑝C𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
2726adantlr 712 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
28 incom 4201 . . . . . . 7 (𝐶𝐵) = (𝐵𝐶)
2928oveq1i 7422 . . . . . 6 ((𝐶𝐵) ∨ 𝐴) = ((𝐵𝐶) ∨ 𝐴)
30 chincl 31020 . . . . . . . . 9 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
316, 30mpan 687 . . . . . . . 8 (𝐶C → (𝐵𝐶) ∈ C )
32 chlejb1 31033 . . . . . . . . 9 (((𝐵𝐶) ∈ C𝐴C ) → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
331, 32mpan2 688 . . . . . . . 8 ((𝐵𝐶) ∈ C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3416, 31, 333syl 18 . . . . . . 7 (𝑝C → ((𝐵𝐶) ⊆ 𝐴 ↔ ((𝐵𝐶) ∨ 𝐴) = 𝐴))
3534biimpa 476 . . . . . 6 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐵𝐶) ∨ 𝐴) = 𝐴)
3629, 35eqtrid 2783 . . . . 5 ((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3736adantr 480 . . . 4 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → ((𝐶𝐵) ∨ 𝐴) = 𝐴)
3827, 37eqtr3d 2773 . . 3 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐵 𝑀* 𝐴) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
3938adantrr 714 . 2 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐴)
4013, 39sseqtrd 4022 1 (((𝑝C ∧ (𝐵𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀* 𝐴𝑝 ⊆ (𝐴 𝐵))) → 𝑝𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  cin 3947  wss 3948   class class class wbr 5148  (class class class)co 7412   C cch 30450   chj 30454   𝑀* cdmd 30488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cc 10434  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194  ax-hilex 30520  ax-hfvadd 30521  ax-hvcom 30522  ax-hvass 30523  ax-hv0cl 30524  ax-hvaddid 30525  ax-hfvmul 30526  ax-hvmulid 30527  ax-hvmulass 30528  ax-hvdistr1 30529  ax-hvdistr2 30530  ax-hvmul0 30531  ax-hfi 30600  ax-his1 30603  ax-his2 30604  ax-his3 30605  ax-his4 30606  ax-hcompl 30723
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-omul 8475  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-acn 9941  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-cn 22952  df-cnp 22953  df-lm 22954  df-haus 23040  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cfil 25004  df-cau 25005  df-cmet 25006  df-grpo 30014  df-gid 30015  df-ginv 30016  df-gdiv 30017  df-ablo 30066  df-vc 30080  df-nv 30113  df-va 30116  df-ba 30117  df-sm 30118  df-0v 30119  df-vs 30120  df-nmcv 30121  df-ims 30122  df-dip 30222  df-ssp 30243  df-ph 30334  df-cbn 30384  df-hnorm 30489  df-hba 30490  df-hvsub 30492  df-hlim 30493  df-hcau 30494  df-sh 30728  df-ch 30742  df-oc 30773  df-ch0 30774  df-shs 30829  df-chj 30831  df-dmd 31802
This theorem is referenced by:  mdsymlem2  31925
  Copyright terms: Public domain W3C validator