HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem3 Structured version   Visualization version   GIF version

Theorem chirredlem3 32376
Description: Lemma for chirredi 32378. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredlem3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟𝐴𝑟 = 𝑝))
Distinct variable group:   𝑞,𝑝,𝑟,𝑥,𝐴

Proof of Theorem chirredlem3
StepHypRef Expression
1 atelch 32328 . . 3 (𝑞 ∈ HAtoms → 𝑞C )
2 chirred.1 . . . . . . . . . . . 12 𝐴C
32chirredlem2 32375 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
43oveq2d 7370 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑟 𝑞))
5 atelch 32328 . . . . . . . . . . . . . 14 (𝑟 ∈ HAtoms → 𝑟C )
65adantr 480 . . . . . . . . . . . . 13 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → 𝑟C )
7 atelch 32328 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝C )
8 chjcl 31341 . . . . . . . . . . . . . . 15 ((𝑝C𝑞C ) → (𝑝 𝑞) ∈ C )
97, 8sylan 580 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) ∈ C )
109ad2ant2r 747 . . . . . . . . . . . . 13 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) ∈ C )
11 id 22 . . . . . . . . . . . . 13 (𝑟 ⊆ (𝑝 𝑞) → 𝑟 ⊆ (𝑝 𝑞))
12 pjoml2 31595 . . . . . . . . . . . . 13 ((𝑟C ∧ (𝑝 𝑞) ∈ C𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
136, 10, 11, 12syl3an 1160 . . . . . . . . . . . 12 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
14133com12 1123 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
15143expb 1120 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
164, 15eqtr3d 2770 . . . . . . . . 9 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 𝑞) = (𝑝 𝑞))
1716ineq2d 4169 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = (𝐴 ∩ (𝑝 𝑞)))
18 breq2 5099 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑟 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑟))
19 chirred.2 . . . . . . . . . . . . . . . 16 (𝑥C𝐴 𝐶 𝑥)
2018, 19vtoclga 3529 . . . . . . . . . . . . . . 15 (𝑟C𝐴 𝐶 𝑟)
21 breq2 5099 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑞))
2221, 19vtoclga 3529 . . . . . . . . . . . . . . 15 (𝑞C𝐴 𝐶 𝑞)
2320, 22anim12i 613 . . . . . . . . . . . . . 14 ((𝑟C𝑞C ) → (𝐴 𝐶 𝑟𝐴 𝐶 𝑞))
24 fh1 31602 . . . . . . . . . . . . . . 15 (((𝐴C𝑟C𝑞C ) ∧ (𝐴 𝐶 𝑟𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
252, 24mp3anl1 1457 . . . . . . . . . . . . . 14 (((𝑟C𝑞C ) ∧ (𝐴 𝐶 𝑟𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2623, 25mpdan 687 . . . . . . . . . . . . 13 ((𝑟C𝑞C ) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
275, 26sylan 580 . . . . . . . . . . . 12 ((𝑟 ∈ HAtoms ∧ 𝑞C ) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2827ancoms 458 . . . . . . . . . . 11 ((𝑞C𝑟 ∈ HAtoms) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2928adantrr 717 . . . . . . . . . 10 ((𝑞C ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
3029ad2ant2r 747 . . . . . . . . 9 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
3130adantll 714 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
32 breq2 5099 . . . . . . . . . . . . . 14 (𝑥 = 𝑝 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑝))
3332, 19vtoclga 3529 . . . . . . . . . . . . 13 (𝑝C𝐴 𝐶 𝑝)
3433, 22anim12i 613 . . . . . . . . . . . 12 ((𝑝C𝑞C ) → (𝐴 𝐶 𝑝𝐴 𝐶 𝑞))
35 fh1 31602 . . . . . . . . . . . . 13 (((𝐴C𝑝C𝑞C ) ∧ (𝐴 𝐶 𝑝𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
362, 35mp3anl1 1457 . . . . . . . . . . . 12 (((𝑝C𝑞C ) ∧ (𝐴 𝐶 𝑝𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
3734, 36mpdan 687 . . . . . . . . . . 11 ((𝑝C𝑞C ) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
387, 37sylan 580 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
3938ad2ant2r 747 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
4039adantr 480 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
4117, 31, 403eqtr3d 2776 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑟) ∨ (𝐴𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
42 sseqin2 4172 . . . . . . . . . . 11 (𝑟𝐴 ↔ (𝐴𝑟) = 𝑟)
4342biimpi 216 . . . . . . . . . 10 (𝑟𝐴 → (𝐴𝑟) = 𝑟)
4443ad2antlr 727 . . . . . . . . 9 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝐴𝑟) = 𝑟)
4544adantl 481 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑟) = 𝑟)
46 incom 4158 . . . . . . . . . 10 (𝐴𝑞) = (𝑞𝐴)
47 chsh 31208 . . . . . . . . . . . 12 (𝑞C𝑞S )
482chshii 31211 . . . . . . . . . . . 12 𝐴S
49 orthin 31430 . . . . . . . . . . . 12 ((𝑞S𝐴S ) → (𝑞 ⊆ (⊥‘𝐴) → (𝑞𝐴) = 0))
5047, 48, 49sylancl 586 . . . . . . . . . . 11 (𝑞C → (𝑞 ⊆ (⊥‘𝐴) → (𝑞𝐴) = 0))
5150imp 406 . . . . . . . . . 10 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞𝐴) = 0)
5246, 51eqtrid 2780 . . . . . . . . 9 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝐴𝑞) = 0)
5352ad2antlr 727 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑞) = 0)
5445, 53oveq12d 7372 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑟) ∨ (𝐴𝑞)) = (𝑟 0))
55 sseqin2 4172 . . . . . . . . . . 11 (𝑝𝐴 ↔ (𝐴𝑝) = 𝑝)
5655biimpi 216 . . . . . . . . . 10 (𝑝𝐴 → (𝐴𝑝) = 𝑝)
5756adantl 481 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (𝐴𝑝) = 𝑝)
5857ad2antrr 726 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑝) = 𝑝)
5958, 53oveq12d 7372 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑝) ∨ (𝐴𝑞)) = (𝑝 0))
6041, 54, 593eqtr3d 2776 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 0) = (𝑝 0))
61 chj0 31481 . . . . . . . . 9 (𝑟C → (𝑟 0) = 𝑟)
625, 61syl 17 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟 0) = 𝑟)
6362ad2antrr 726 . . . . . . 7 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 0) = 𝑟)
6463adantl 481 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 0) = 𝑟)
65 chj0 31481 . . . . . . . 8 (𝑝C → (𝑝 0) = 𝑝)
667, 65syl 17 . . . . . . 7 (𝑝 ∈ HAtoms → (𝑝 0) = 𝑝)
6766ad3antrrr 730 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 0) = 𝑝)
6860, 64, 673eqtr3d 2776 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑟 = 𝑝)
6968exp44 437 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟𝐴 → (𝑟 ⊆ (𝑝 𝑞) → 𝑟 = 𝑝))))
7069com34 91 . . 3 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑟𝐴𝑟 = 𝑝))))
711, 70sylanr1 682 . 2 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑟𝐴𝑟 = 𝑝))))
7271imp32 418 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟𝐴𝑟 = 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898   class class class wbr 5095  cfv 6488  (class class class)co 7354   S csh 30912   C cch 30913  cort 30914   chj 30917  0c0h 30919   𝐶 ccm 30920  HAtomscat 30949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095  ax-hilex 30983  ax-hfvadd 30984  ax-hvcom 30985  ax-hvass 30986  ax-hv0cl 30987  ax-hvaddid 30988  ax-hfvmul 30989  ax-hvmulid 30990  ax-hvmulass 30991  ax-hvdistr1 30992  ax-hvdistr2 30993  ax-hvmul0 30994  ax-hfi 31063  ax-his1 31066  ax-his2 31067  ax-his3 31068  ax-his4 31069  ax-hcompl 31186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400  df-sum 15598  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-cn 23145  df-cnp 23146  df-lm 23147  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cfil 25185  df-cau 25186  df-cmet 25187  df-grpo 30477  df-gid 30478  df-ginv 30479  df-gdiv 30480  df-ablo 30529  df-vc 30543  df-nv 30576  df-va 30579  df-ba 30580  df-sm 30581  df-0v 30582  df-vs 30583  df-nmcv 30584  df-ims 30585  df-dip 30685  df-ssp 30706  df-ph 30797  df-cbn 30847  df-hnorm 30952  df-hba 30953  df-hvsub 30955  df-hlim 30956  df-hcau 30957  df-sh 31191  df-ch 31205  df-oc 31236  df-ch0 31237  df-shs 31292  df-span 31293  df-chj 31294  df-chsup 31295  df-pjh 31379  df-cm 31567  df-cv 32263  df-at 32322
This theorem is referenced by:  chirredlem4  32377
  Copyright terms: Public domain W3C validator