HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem3 Structured version   Visualization version   GIF version

Theorem chirredlem3 32321
Description: Lemma for chirredi 32323. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredlem3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟𝐴𝑟 = 𝑝))
Distinct variable group:   𝑞,𝑝,𝑟,𝑥,𝐴

Proof of Theorem chirredlem3
StepHypRef Expression
1 atelch 32273 . . 3 (𝑞 ∈ HAtoms → 𝑞C )
2 chirred.1 . . . . . . . . . . . 12 𝐴C
32chirredlem2 32320 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
43oveq2d 7403 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑟 𝑞))
5 atelch 32273 . . . . . . . . . . . . . 14 (𝑟 ∈ HAtoms → 𝑟C )
65adantr 480 . . . . . . . . . . . . 13 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → 𝑟C )
7 atelch 32273 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝C )
8 chjcl 31286 . . . . . . . . . . . . . . 15 ((𝑝C𝑞C ) → (𝑝 𝑞) ∈ C )
97, 8sylan 580 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) ∈ C )
109ad2ant2r 747 . . . . . . . . . . . . 13 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) ∈ C )
11 id 22 . . . . . . . . . . . . 13 (𝑟 ⊆ (𝑝 𝑞) → 𝑟 ⊆ (𝑝 𝑞))
12 pjoml2 31540 . . . . . . . . . . . . 13 ((𝑟C ∧ (𝑝 𝑞) ∈ C𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
136, 10, 11, 12syl3an 1160 . . . . . . . . . . . 12 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
14133com12 1123 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
15143expb 1120 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 ((⊥‘𝑟) ∩ (𝑝 𝑞))) = (𝑝 𝑞))
164, 15eqtr3d 2766 . . . . . . . . 9 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 𝑞) = (𝑝 𝑞))
1716ineq2d 4183 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = (𝐴 ∩ (𝑝 𝑞)))
18 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑟 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑟))
19 chirred.2 . . . . . . . . . . . . . . . 16 (𝑥C𝐴 𝐶 𝑥)
2018, 19vtoclga 3543 . . . . . . . . . . . . . . 15 (𝑟C𝐴 𝐶 𝑟)
21 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑞))
2221, 19vtoclga 3543 . . . . . . . . . . . . . . 15 (𝑞C𝐴 𝐶 𝑞)
2320, 22anim12i 613 . . . . . . . . . . . . . 14 ((𝑟C𝑞C ) → (𝐴 𝐶 𝑟𝐴 𝐶 𝑞))
24 fh1 31547 . . . . . . . . . . . . . . 15 (((𝐴C𝑟C𝑞C ) ∧ (𝐴 𝐶 𝑟𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
252, 24mp3anl1 1457 . . . . . . . . . . . . . 14 (((𝑟C𝑞C ) ∧ (𝐴 𝐶 𝑟𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2623, 25mpdan 687 . . . . . . . . . . . . 13 ((𝑟C𝑞C ) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
275, 26sylan 580 . . . . . . . . . . . 12 ((𝑟 ∈ HAtoms ∧ 𝑞C ) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2827ancoms 458 . . . . . . . . . . 11 ((𝑞C𝑟 ∈ HAtoms) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
2928adantrr 717 . . . . . . . . . 10 ((𝑞C ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
3029ad2ant2r 747 . . . . . . . . 9 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
3130adantll 714 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑟 𝑞)) = ((𝐴𝑟) ∨ (𝐴𝑞)))
32 breq2 5111 . . . . . . . . . . . . . 14 (𝑥 = 𝑝 → (𝐴 𝐶 𝑥𝐴 𝐶 𝑝))
3332, 19vtoclga 3543 . . . . . . . . . . . . 13 (𝑝C𝐴 𝐶 𝑝)
3433, 22anim12i 613 . . . . . . . . . . . 12 ((𝑝C𝑞C ) → (𝐴 𝐶 𝑝𝐴 𝐶 𝑞))
35 fh1 31547 . . . . . . . . . . . . 13 (((𝐴C𝑝C𝑞C ) ∧ (𝐴 𝐶 𝑝𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
362, 35mp3anl1 1457 . . . . . . . . . . . 12 (((𝑝C𝑞C ) ∧ (𝐴 𝐶 𝑝𝐴 𝐶 𝑞)) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
3734, 36mpdan 687 . . . . . . . . . . 11 ((𝑝C𝑞C ) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
387, 37sylan 580 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
3938ad2ant2r 747 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
4039adantr 480 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴 ∩ (𝑝 𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
4117, 31, 403eqtr3d 2772 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑟) ∨ (𝐴𝑞)) = ((𝐴𝑝) ∨ (𝐴𝑞)))
42 sseqin2 4186 . . . . . . . . . . 11 (𝑟𝐴 ↔ (𝐴𝑟) = 𝑟)
4342biimpi 216 . . . . . . . . . 10 (𝑟𝐴 → (𝐴𝑟) = 𝑟)
4443ad2antlr 727 . . . . . . . . 9 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝐴𝑟) = 𝑟)
4544adantl 481 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑟) = 𝑟)
46 incom 4172 . . . . . . . . . 10 (𝐴𝑞) = (𝑞𝐴)
47 chsh 31153 . . . . . . . . . . . 12 (𝑞C𝑞S )
482chshii 31156 . . . . . . . . . . . 12 𝐴S
49 orthin 31375 . . . . . . . . . . . 12 ((𝑞S𝐴S ) → (𝑞 ⊆ (⊥‘𝐴) → (𝑞𝐴) = 0))
5047, 48, 49sylancl 586 . . . . . . . . . . 11 (𝑞C → (𝑞 ⊆ (⊥‘𝐴) → (𝑞𝐴) = 0))
5150imp 406 . . . . . . . . . 10 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞𝐴) = 0)
5246, 51eqtrid 2776 . . . . . . . . 9 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝐴𝑞) = 0)
5352ad2antlr 727 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑞) = 0)
5445, 53oveq12d 7405 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑟) ∨ (𝐴𝑞)) = (𝑟 0))
55 sseqin2 4186 . . . . . . . . . . 11 (𝑝𝐴 ↔ (𝐴𝑝) = 𝑝)
5655biimpi 216 . . . . . . . . . 10 (𝑝𝐴 → (𝐴𝑝) = 𝑝)
5756adantl 481 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (𝐴𝑝) = 𝑝)
5857ad2antrr 726 . . . . . . . 8 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝐴𝑝) = 𝑝)
5958, 53oveq12d 7405 . . . . . . 7 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((𝐴𝑝) ∨ (𝐴𝑞)) = (𝑝 0))
6041, 54, 593eqtr3d 2772 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 0) = (𝑝 0))
61 chj0 31426 . . . . . . . . 9 (𝑟C → (𝑟 0) = 𝑟)
625, 61syl 17 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟 0) = 𝑟)
6362ad2antrr 726 . . . . . . 7 (((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 0) = 𝑟)
6463adantl 481 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 0) = 𝑟)
65 chj0 31426 . . . . . . . 8 (𝑝C → (𝑝 0) = 𝑝)
667, 65syl 17 . . . . . . 7 (𝑝 ∈ HAtoms → (𝑝 0) = 𝑝)
6766ad3antrrr 730 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 0) = 𝑝)
6860, 64, 673eqtr3d 2772 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑟 = 𝑝)
6968exp44 437 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟𝐴 → (𝑟 ⊆ (𝑝 𝑞) → 𝑟 = 𝑝))))
7069com34 91 . . 3 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑟𝐴𝑟 = 𝑝))))
711, 70sylanr1 682 . 2 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑟𝐴𝑟 = 𝑝))))
7271imp32 418 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟𝐴𝑟 = 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387   S csh 30857   C cch 30858  cort 30859   chj 30862  0c0h 30864   𝐶 ccm 30865  HAtomscat 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-span 31238  df-chj 31239  df-chsup 31240  df-pjh 31324  df-cm 31512  df-cv 32208  df-at 32267
This theorem is referenced by:  chirredlem4  32322
  Copyright terms: Public domain W3C validator