MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facavg Structured version   Visualization version   GIF version

Theorem facavg 13292
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))

Proof of Theorem facavg
StepHypRef Expression
1 nn0readdcl 11604 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
21rehalfcld 11525 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℝ)
3 flle 12808 . . . . 5 (((𝑀 + 𝑁) / 2) ∈ ℝ → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
42, 3syl 17 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
5 reflcl 12805 . . . . . 6 (((𝑀 + 𝑁) / 2) ∈ ℝ → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
62, 5syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
7 nn0re 11548 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
87adantr 472 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
9 letr 10385 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
106, 2, 8, 9syl3anc 1490 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
114, 10mpand 686 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
12 nn0addcl 11575 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
1312nn0ge0d 11601 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ (𝑀 + 𝑁))
14 halfnneg2 11509 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℝ → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
151, 14syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
1613, 15mpbid 223 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ ((𝑀 + 𝑁) / 2))
17 flge0nn0 12829 . . . . 5 ((((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 0 ≤ ((𝑀 + 𝑁) / 2)) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
182, 16, 17syl2anc 579 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
19 simpl 474 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
20 facwordi 13280 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))
21203exp 1148 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))))
2218, 19, 21sylc 65 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀)))
23 faccl 13274 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
2423nncnd 11292 . . . . . . 7 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
2524mulid1d 10311 . . . . . 6 (𝑀 ∈ ℕ0 → ((!‘𝑀) · 1) = (!‘𝑀))
2625adantr 472 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) = (!‘𝑀))
27 faccl 13274 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2827nnred 11291 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2928adantl 473 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
3023nnred 11291 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
3123nnnn0d 11598 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ0)
3231nn0ge0d 11601 . . . . . . . 8 (𝑀 ∈ ℕ0 → 0 ≤ (!‘𝑀))
3330, 32jca 507 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3433adantr 472 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3527nnge1d 11320 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (!‘𝑁))
3635adantl 473 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑁))
37 1re 10293 . . . . . . 7 1 ∈ ℝ
38 lemul2a 11132 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
3937, 38mp3anl1 1579 . . . . . 6 ((((!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4029, 34, 36, 39syl21anc 866 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4126, 40eqbrtrrd 4833 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁)))
42 faccl 13274 . . . . . . 7 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4318, 42syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4443nnred 11291 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ)
4530adantr 472 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
46 remulcl 10274 . . . . . 6 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
4730, 28, 46syl2an 589 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
48 letr 10385 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
4944, 45, 47, 48syl3anc 1490 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5041, 49mpan2d 685 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5111, 22, 503syld 60 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
52 nn0re 11548 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5352adantl 473 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
54 letr 10385 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
556, 2, 53, 54syl3anc 1490 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
564, 55mpand 686 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
57 simpr 477 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
58 facwordi 13280 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))
59583exp 1148 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))))
6018, 57, 59sylc 65 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁)))
6127nncnd 11292 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
6261mulid2d 10312 . . . . . 6 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
6362adantl 473 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) = (!‘𝑁))
6427nnnn0d 11598 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
6564nn0ge0d 11601 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
6628, 65jca 507 . . . . . . 7 (𝑁 ∈ ℕ0 → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
6766adantl 473 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
6823nnge1d 11320 . . . . . . 7 (𝑀 ∈ ℕ0 → 1 ≤ (!‘𝑀))
6968adantr 472 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑀))
70 lemul1a 11131 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7137, 70mp3anl1 1579 . . . . . 6 ((((!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7245, 67, 69, 71syl21anc 866 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7363, 72eqbrtrrd 4833 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁)))
74 letr 10385 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7544, 29, 47, 74syl3anc 1490 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7673, 75mpan2d 685 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7756, 60, 763syld 60 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
78 avgle 11520 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
797, 52, 78syl2an 589 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
8051, 77, 79mpjaod 886 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cle 10329   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cfl 12799  !cfa 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fl 12801  df-seq 13009  df-fac 13265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator