MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facavg Structured version   Visualization version   GIF version

Theorem facavg 13649
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facavg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))

Proof of Theorem facavg
StepHypRef Expression
1 nn0readdcl 11949 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
21rehalfcld 11872 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) / 2) ∈ ℝ)
3 flle 13157 . . . . 5 (((𝑀 + 𝑁) / 2) ∈ ℝ → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
42, 3syl 17 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2))
5 reflcl 13154 . . . . . 6 (((𝑀 + 𝑁) / 2) ∈ ℝ → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
62, 5syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ)
7 nn0re 11894 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
87adantr 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
9 letr 10722 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
106, 2, 8, 9syl3anc 1363 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑀) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
114, 10mpand 691 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀))
12 nn0addcl 11920 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
1312nn0ge0d 11946 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ (𝑀 + 𝑁))
14 halfnneg2 11856 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℝ → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
151, 14syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑀 + 𝑁) ↔ 0 ≤ ((𝑀 + 𝑁) / 2)))
1613, 15mpbid 233 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ ((𝑀 + 𝑁) / 2))
17 flge0nn0 13178 . . . . 5 ((((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 0 ≤ ((𝑀 + 𝑁) / 2)) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
182, 16, 17syl2anc 584 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0)
19 simpl 483 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
20 facwordi 13637 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))
21203exp 1111 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀))))
2218, 19, 21sylc 65 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀)))
23 faccl 13631 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
2423nncnd 11642 . . . . . . 7 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
2524mulid1d 10646 . . . . . 6 (𝑀 ∈ ℕ0 → ((!‘𝑀) · 1) = (!‘𝑀))
2625adantr 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) = (!‘𝑀))
27 faccl 13631 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2827nnred 11641 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2928adantl 482 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
3023nnred 11641 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
3123nnnn0d 11943 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ0)
3231nn0ge0d 11946 . . . . . . . 8 (𝑀 ∈ ℕ0 → 0 ≤ (!‘𝑀))
3330, 32jca 512 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3433adantr 481 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀)))
3527nnge1d 11673 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (!‘𝑁))
3635adantl 482 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑁))
37 1re 10629 . . . . . . 7 1 ∈ ℝ
38 lemul2a 11483 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
3937, 38mp3anl1 1446 . . . . . 6 ((((!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) ∈ ℝ ∧ 0 ≤ (!‘𝑀))) ∧ 1 ≤ (!‘𝑁)) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4029, 34, 36, 39syl21anc 833 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · 1) ≤ ((!‘𝑀) · (!‘𝑁)))
4126, 40eqbrtrrd 5081 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁)))
4218faccld 13632 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℕ)
4342nnred 11641 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ)
4430adantr 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
45 remulcl 10610 . . . . . 6 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
4630, 28, 45syl2an 595 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑀) · (!‘𝑁)) ∈ ℝ)
47 letr 10722 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
4843, 44, 46, 47syl3anc 1363 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) ∧ (!‘𝑀) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
4941, 48mpan2d 690 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑀) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
5011, 22, 493syld 60 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
51 nn0re 11894 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5251adantl 482 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
53 letr 10722 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℝ ∧ ((𝑀 + 𝑁) / 2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
546, 2, 52, 53syl3anc 1363 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((⌊‘((𝑀 + 𝑁) / 2)) ≤ ((𝑀 + 𝑁) / 2) ∧ ((𝑀 + 𝑁) / 2) ≤ 𝑁) → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
554, 54mpand 691 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁))
56 simpr 485 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
57 facwordi 13637 . . . . 5 (((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))
58573exp 1111 . . . 4 ((⌊‘((𝑀 + 𝑁) / 2)) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁))))
5918, 56, 58sylc 65 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝑀 + 𝑁) / 2)) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁)))
6027nncnd 11642 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
6160mulid2d 10647 . . . . . 6 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
6261adantl 482 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) = (!‘𝑁))
6327nnnn0d 11943 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
6463nn0ge0d 11946 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
6528, 64jca 512 . . . . . . 7 (𝑁 ∈ ℕ0 → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
6665adantl 482 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁)))
6723nnge1d 11673 . . . . . . 7 (𝑀 ∈ ℕ0 → 1 ≤ (!‘𝑀))
6867adantr 481 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 1 ≤ (!‘𝑀))
69 lemul1a 11482 . . . . . . 7 (((1 ∈ ℝ ∧ (!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7037, 69mp3anl1 1446 . . . . . 6 ((((!‘𝑀) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 ≤ (!‘𝑁))) ∧ 1 ≤ (!‘𝑀)) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7144, 66, 68, 70syl21anc 833 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1 · (!‘𝑁)) ≤ ((!‘𝑀) · (!‘𝑁)))
7262, 71eqbrtrrd 5081 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁)))
73 letr 10722 . . . . 5 (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((!‘𝑀) · (!‘𝑁)) ∈ ℝ) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7443, 29, 46, 73syl3anc 1363 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) ∧ (!‘𝑁) ≤ ((!‘𝑀) · (!‘𝑁))) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7572, 74mpan2d 690 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ (!‘𝑁) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
7655, 59, 753syld 60 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑁 → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))))
77 avgle 11867 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
787, 51, 77syl2an 595 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 + 𝑁) / 2) ≤ 𝑀 ∨ ((𝑀 + 𝑁) / 2) ≤ 𝑁))
7950, 76, 78mpjaod 854 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664   / cdiv 11285  2c2 11680  0cn0 11885  cfl 13148  !cfa 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fl 13150  df-seq 13358  df-fac 13622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator