Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . 3
⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → 𝐴 ≈ suc 𝑀) |
2 | | encv 8891 |
. . . . 5
⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) |
3 | 2 | simpld 495 |
. . . 4
⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
4 | 3 | 3anim1i 1152 |
. . 3
⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) |
5 | | bren 8893 |
. . . 4
⊢ (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc
𝑀) |
6 | | sucidg 6398 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) |
7 | | f1ocnvdm 7231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
8 | 7 | 3adant2 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
9 | | f1ofvswap 7252 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ (◡𝑓‘𝑀) ∈ 𝐴) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) |
10 | 8, 9 | syld3an3 1409 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) |
11 | | f1ocnvfv2 7223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (𝑓‘(◡𝑓‘𝑀)) = 𝑀) |
12 | 11 | opeq2d 4837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → 〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉 = 〈𝑋, 𝑀〉) |
13 | 12 | preq1d 4700 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉} = {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) |
14 | 13 | uneq2d 4123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) = ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})) |
15 | 14 | f1oeq1d 6779 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀)) |
16 | 15 | 3adant2 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, (𝑓‘(◡𝑓‘𝑀))〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀)) |
17 | 10, 16 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) |
18 | 6, 17 | syl3an3 1165 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) |
19 | 18 | 3adant3r1 1182 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) |
20 | | f1ofun 6786 |
. . . . . . . . . . 11
⊢ (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀 → Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})) |
21 | | opex 5421 |
. . . . . . . . . . . . . 14
⊢
〈𝑋, 𝑀〉 ∈ V |
22 | 21 | prid1 4723 |
. . . . . . . . . . . . 13
⊢
〈𝑋, 𝑀〉 ∈ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉} |
23 | | elun2 4137 |
. . . . . . . . . . . . 13
⊢
(〈𝑋, 𝑀〉 ∈ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉} → 〈𝑋, 𝑀〉 ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
〈𝑋, 𝑀〉 ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) |
25 | | funopfv 6894 |
. . . . . . . . . . . 12
⊢ (Fun
((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) → (〈𝑋, 𝑀〉 ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑋) = 𝑀)) |
26 | 24, 25 | mpi 20 |
. . . . . . . . . . 11
⊢ (Fun
((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑋) = 𝑀) |
27 | 19, 20, 26 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑋) = 𝑀) |
28 | | simpr2 1195 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → 𝑋 ∈ 𝐴) |
29 | | f1ocnvfv 7224 |
. . . . . . . . . . 11
⊢ ((((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑋) = 𝑀 → (◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀) = 𝑋)) |
30 | 19, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑋) = 𝑀 → (◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀) = 𝑋)) |
31 | 27, 30 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀) = 𝑋) |
32 | 31 | sneqd 4598 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)} = {𝑋}) |
33 | 32 | difeq2d 4082 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∖ {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)}) = (𝐴 ∖ {𝑋})) |
34 | | simpr1 1194 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → 𝐴 ∈ V) |
35 | | 3simpc 1150 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) |
36 | 35 | anim2i 617 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On))) |
37 | | 3anass 1095 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) ↔ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On))) |
38 | 36, 37 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) |
39 | 34, 38 | jca 512 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On))) |
40 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → 𝐴 ∈ V) |
41 | | simpr3 1196 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → 𝑀 ∈ On) |
42 | 40, 41 | jca 512 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∈ V ∧ 𝑀 ∈ On)) |
43 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) |
44 | 42, 43 | jca 512 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → ((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On))) |
45 | | vex 3449 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
46 | 45 | resex 5985 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∈ V |
47 | | prex 5389 |
. . . . . . . . . . 11
⊢
{〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉} ∈ V |
48 | 46, 47 | unex 7680 |
. . . . . . . . . 10
⊢ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) ∈ V |
49 | | dif1enlem 9100 |
. . . . . . . . . 10
⊢
(((((𝑓 ↾
(𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}) ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) → (𝐴 ∖ {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)}) ≈ 𝑀) |
50 | 48, 49 | mp3anl1 1455 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉}):𝐴–1-1-onto→suc
𝑀) → (𝐴 ∖ {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)}) ≈ 𝑀) |
51 | 18, 50 | sylan2 593 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴–1-1-onto→suc
𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∖ {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)}) ≈ 𝑀) |
52 | 39, 44, 51 | 3syl 18 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∖ {(◡((𝑓 ↾ (𝐴 ∖ {𝑋, (◡𝑓‘𝑀)})) ∪ {〈𝑋, 𝑀〉, 〈(◡𝑓‘𝑀), (𝑓‘𝑋)〉})‘𝑀)}) ≈ 𝑀) |
53 | 33, 52 | eqbrtrrd 5129 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→suc
𝑀 ∧ (𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On)) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
54 | 53 | ex 413 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→suc
𝑀 → ((𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀)) |
55 | 54 | exlimiv 1933 |
. . . 4
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→suc
𝑀 → ((𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀)) |
56 | 5, 55 | sylbi 216 |
. . 3
⊢ (𝐴 ≈ suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀)) |
57 | 1, 4, 56 | sylc 65 |
. 2
⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |
58 | 57 | 3comr 1125 |
1
⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) |