MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1en Structured version   Visualization version   GIF version

Theorem dif1en 9104
Description: If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → 𝐴 ≈ suc 𝑀)
2 encv 8891 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
32simpld 495 . . . 4 (𝐴 ≈ suc 𝑀𝐴 ∈ V)
433anim1i 1152 . . 3 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On))
5 bren 8893 . . . 4 (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
6 sucidg 6398 . . . . . . . . . . . . 13 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
7 f1ocnvdm 7231 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
873adant2 1131 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
9 f1ofvswap 7252 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
108, 9syld3an3 1409 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
11 f1ocnvfv2 7223 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓‘(𝑓𝑀)) = 𝑀)
1211opeq2d 4837 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ⟨𝑋, (𝑓‘(𝑓𝑀))⟩ = ⟨𝑋, 𝑀⟩)
1312preq1d 4700 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} = {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})
1413uneq2d 4123 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) = ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
1514f1oeq1d 6779 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀))
16153adant2 1131 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀))
1710, 16mpbid 231 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
186, 17syl3an3 1165 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
19183adant3r1 1182 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
20 f1ofun 6786 . . . . . . . . . . 11 (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 → Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
21 opex 5421 . . . . . . . . . . . . . 14 𝑋, 𝑀⟩ ∈ V
2221prid1 4723 . . . . . . . . . . . . 13 𝑋, 𝑀⟩ ∈ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}
23 elun2 4137 . . . . . . . . . . . . 13 (⟨𝑋, 𝑀⟩ ∈ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} → ⟨𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
2422, 23ax-mp 5 . . . . . . . . . . . 12 𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})
25 funopfv 6894 . . . . . . . . . . . 12 (Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (⟨𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀))
2624, 25mpi 20 . . . . . . . . . . 11 (Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀)
2719, 20, 263syl 18 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀)
28 simpr2 1195 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → 𝑋𝐴)
29 f1ocnvfv 7224 . . . . . . . . . . 11 ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀𝑋𝐴) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀 → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋))
3019, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀 → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋))
3127, 30mpd 15 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋)
3231sneqd 4598 . . . . . . . 8 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)} = {𝑋})
3332difeq2d 4082 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) = (𝐴 ∖ {𝑋}))
34 simpr1 1194 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → 𝐴 ∈ V)
35 3simpc 1150 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝑋𝐴𝑀 ∈ On))
3635anim2i 617 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝑋𝐴𝑀 ∈ On)))
37 3anass 1095 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On) ↔ (𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝑋𝐴𝑀 ∈ On)))
3836, 37sylibr 233 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On))
3934, 38jca 512 . . . . . . . 8 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)))
40 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → 𝐴 ∈ V)
41 simpr3 1196 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → 𝑀 ∈ On)
4240, 41jca 512 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝐴 ∈ V ∧ 𝑀 ∈ On))
43 simpr 485 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On))
4442, 43jca 512 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → ((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)))
45 vex 3449 . . . . . . . . . . . 12 𝑓 ∈ V
4645resex 5985 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∈ V
47 prex 5389 . . . . . . . . . . 11 {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} ∈ V
4846, 47unex 7680 . . . . . . . . . 10 ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) ∈ V
49 dif1enlem 9100 . . . . . . . . . 10 (((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5048, 49mp3anl1 1455 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5118, 50sylan2 593 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5239, 44, 513syl 18 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5333, 52eqbrtrrd 5129 . . . . . 6 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
5453ex 413 . . . . 5 (𝑓:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5554exlimiv 1933 . . . 4 (∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
565, 55sylbi 216 . . 3 (𝐴 ≈ suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
571, 4, 56sylc 65 . 2 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
58573comr 1125 1 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  ccnv 5632  cres 5635  Oncon0 6317  suc csuc 6319  Fun wfun 6490  1-1-ontowf1o 6495  cfv 6496  cen 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-en 8884
This theorem is referenced by:  dif1ennn  9105
  Copyright terms: Public domain W3C validator