MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1en Structured version   Visualization version   GIF version

Theorem dif1en 8744
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7595 . . . . 5 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
2 breq2 5063 . . . . . . 7 (𝑥 = suc 𝑀 → (𝐴𝑥𝐴 ≈ suc 𝑀))
32rspcev 3620 . . . . . 6 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8526 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
53, 4sylibr 236 . . . . 5 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
61, 5sylan 582 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
7 diffi 8743 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
8 isfi 8526 . . . . 5 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
97, 8sylib 220 . . . 4 (𝐴 ∈ Fin → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
106, 9syl 17 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
11103adant3 1127 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
12 en2sn 8586 . . . . . . . 8 ((𝑋𝐴𝑥 ∈ V) → {𝑋} ≈ {𝑥})
1312elvd 3497 . . . . . . 7 (𝑋𝐴 → {𝑋} ≈ {𝑥})
14 nnord 7581 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
15 orddisj 6222 . . . . . . . 8 (Ord 𝑥 → (𝑥 ∩ {𝑥}) = ∅)
1614, 15syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅)
17 incom 4171 . . . . . . . . . 10 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
18 disjdif 4414 . . . . . . . . . 10 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
1917, 18eqtri 2843 . . . . . . . . 9 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
20 unen 8589 . . . . . . . . . 10 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ {𝑋} ≈ {𝑥}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2120an4s 658 . . . . . . . . 9 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2219, 21mpanl2 699 . . . . . . . 8 (((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2322expcom 416 . . . . . . 7 (({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
2413, 16, 23syl2an 597 . . . . . 6 ((𝑋𝐴𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
25243ad2antl3 1182 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
26 difsnid 4736 . . . . . . . . 9 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
27 df-suc 6190 . . . . . . . . . . 11 suc 𝑥 = (𝑥 ∪ {𝑥})
2827eqcomi 2829 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = suc 𝑥
2928a1i 11 . . . . . . . . 9 (𝑋𝐴 → (𝑥 ∪ {𝑥}) = suc 𝑥)
3026, 29breq12d 5072 . . . . . . . 8 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
31303ad2ant3 1130 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
3231adantr 483 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
33 ensym 8551 . . . . . . . . . . 11 (𝐴 ≈ suc 𝑀 → suc 𝑀𝐴)
34 entr 8554 . . . . . . . . . . . . 13 ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 ≈ suc 𝑥)
35 peano2 7595 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
36 nneneq 8693 . . . . . . . . . . . . . 14 ((suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3735, 36sylan2 594 . . . . . . . . . . . . 13 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3834, 37syl5ib 246 . . . . . . . . . . . 12 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 = suc 𝑥))
3938expd 418 . . . . . . . . . . 11 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀𝐴 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4033, 39syl5 34 . . . . . . . . . 10 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
411, 40sylan 582 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4241imp 409 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4342an32s 650 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
44433adantl3 1163 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4532, 44sylbid 242 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) → suc 𝑀 = suc 𝑥))
46 peano4 7597 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4746biimpd 231 . . . . . 6 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
48473ad2antl1 1180 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4925, 45, 483syld 60 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥𝑀 = 𝑥))
50 breq2 5063 . . . . 5 (𝑀 = 𝑥 → ((𝐴 ∖ {𝑋}) ≈ 𝑀 ↔ (𝐴 ∖ {𝑋}) ≈ 𝑥))
5150biimprcd 252 . . . 4 ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝑀 = 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5249, 51sylcom 30 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5352rexlimdva 3283 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5411, 53mpd 15 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wrex 3138  Vcvv 3491  cdif 3926  cun 3927  cin 3928  c0 4284  {csn 4560   class class class wbr 5059  Ord word 6183  suc csuc 6186  ωcom 7573  cen 8499  Fincfn 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7574  df-1o 8095  df-er 8282  df-en 8503  df-fin 8506
This theorem is referenced by:  enp1i  8746  findcard  8750  findcard2  8751  en2eleq  9427  en2other2  9428  mreexexlem4d  16913  f1otrspeq  18570  pmtrf  18578  pmtrmvd  18579  pmtrfinv  18584
  Copyright terms: Public domain W3C validator