MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1en Structured version   Visualization version   GIF version

Theorem dif1en 9075
Description: If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5304. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → 𝐴 ≈ suc 𝑀)
2 encv 8880 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
32simpld 494 . . . 4 (𝐴 ≈ suc 𝑀𝐴 ∈ V)
433anim1i 1152 . . 3 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On))
5 bren 8882 . . . 4 (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
6 sucidg 6390 . . . . . . . . . . . . 13 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
7 f1ocnvdm 7222 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
873adant2 1131 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
9 f1ofvswap 7243 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
108, 9syld3an3 1411 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
11 f1ocnvfv2 7214 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓‘(𝑓𝑀)) = 𝑀)
1211opeq2d 4831 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ⟨𝑋, (𝑓‘(𝑓𝑀))⟩ = ⟨𝑋, 𝑀⟩)
1312preq1d 4691 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} = {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})
1413uneq2d 4119 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) = ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
1514f1oeq1d 6759 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀))
16153adant2 1131 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, (𝑓‘(𝑓𝑀))⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 ↔ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀))
1710, 16mpbid 232 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ suc 𝑀) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
186, 17syl3an3 1165 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
19183adant3r1 1183 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀)
20 f1ofun 6766 . . . . . . . . . . 11 (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀 → Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
21 opex 5407 . . . . . . . . . . . . . 14 𝑋, 𝑀⟩ ∈ V
2221prid1 4714 . . . . . . . . . . . . 13 𝑋, 𝑀⟩ ∈ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}
23 elun2 4134 . . . . . . . . . . . . 13 (⟨𝑋, 𝑀⟩ ∈ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} → ⟨𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}))
2422, 23ax-mp 5 . . . . . . . . . . . 12 𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})
25 funopfv 6872 . . . . . . . . . . . 12 (Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (⟨𝑋, 𝑀⟩ ∈ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀))
2624, 25mpi 20 . . . . . . . . . . 11 (Fun ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀)
2719, 20, 263syl 18 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀)
28 simpr2 1196 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → 𝑋𝐴)
29 f1ocnvfv 7215 . . . . . . . . . . 11 ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀𝑋𝐴) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀 → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋))
3019, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → ((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑋) = 𝑀 → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋))
3127, 30mpd 15 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀) = 𝑋)
3231sneqd 4589 . . . . . . . 8 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)} = {𝑋})
3332difeq2d 4077 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) = (𝐴 ∖ {𝑋}))
34 simpr1 1195 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → 𝐴 ∈ V)
35 3simpc 1150 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝑋𝐴𝑀 ∈ On))
3635anim2i 617 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝑋𝐴𝑀 ∈ On)))
37 3anass 1094 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On) ↔ (𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝑋𝐴𝑀 ∈ On)))
3836, 37sylibr 234 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On))
3934, 38jca 511 . . . . . . . 8 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)))
40 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → 𝐴 ∈ V)
41 simpr3 1197 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → 𝑀 ∈ On)
4240, 41jca 511 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝐴 ∈ V ∧ 𝑀 ∈ On))
43 simpr 484 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On))
4442, 43jca 511 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → ((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)))
45 vex 3440 . . . . . . . . . . . 12 𝑓 ∈ V
4645resex 5980 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∈ V
47 prex 5376 . . . . . . . . . . 11 {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩} ∈ V
4846, 47unex 7680 . . . . . . . . . 10 ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) ∈ V
49 dif1enlem 9073 . . . . . . . . . 10 (((((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}) ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5048, 49mp3anl1 1457 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ ((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩}):𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5118, 50sylan2 593 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ (𝑓:𝐴1-1-onto→suc 𝑀𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5239, 44, 513syl 18 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {(((𝑓 ↾ (𝐴 ∖ {𝑋, (𝑓𝑀)})) ∪ {⟨𝑋, 𝑀⟩, ⟨(𝑓𝑀), (𝑓𝑋)⟩})‘𝑀)}) ≈ 𝑀)
5333, 52eqbrtrrd 5116 . . . . . 6 ((𝑓:𝐴1-1-onto→suc 𝑀 ∧ (𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On)) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
5453ex 412 . . . . 5 (𝑓:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5554exlimiv 1930 . . . 4 (∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
565, 55sylbi 217 . . 3 (𝐴 ≈ suc 𝑀 → ((𝐴 ∈ V ∧ 𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀))
571, 4, 56sylc 65 . 2 ((𝐴 ≈ suc 𝑀𝑋𝐴𝑀 ∈ On) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
58573comr 1125 1 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5092  ccnv 5618  cres 5621  Oncon0 6307  suc csuc 6309  Fun wfun 6476  1-1-ontowf1o 6481  cfv 6482  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-en 8873
This theorem is referenced by:  dif1ennn  9076
  Copyright terms: Public domain W3C validator