| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domssr | Structured version Visualization version GIF version | ||
| Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| domssr | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8931 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | |
| 2 | 1 | 3ad2ant3 1135 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐵 ⊆ 𝐶) | |
| 4 | reldom 8924 | . . . . 5 ⊢ Rel ≼ | |
| 5 | 4 | brrelex1i 5694 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ V) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ 𝑉) | |
| 8 | 3, 6, 7 | jca32 515 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉))) |
| 9 | f1ss 6761 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝑓:𝐴–1-1→𝐶) | |
| 10 | vex 3451 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 11 | f1dom4g 8937 | . . . . . . 7 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 12 | 10, 11 | mp3anl1 1457 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
| 13 | 12 | ancoms 458 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 14 | 9, 13 | sylan 580 | . . . 4 ⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
| 15 | 14 | expl 457 | . . 3 ⊢ (𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 16 | 15 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
| 17 | 2, 8, 16 | sylc 65 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-dom 8920 |
| This theorem is referenced by: 0sdom1dom 9185 rex2dom 9193 |
| Copyright terms: Public domain | W3C validator |