MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssr Structured version   Visualization version   GIF version

Theorem domssr 9038
Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssr ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴𝐶)

Proof of Theorem domssr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8998 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
213ad2ant3 1134 . 2 ((𝐶𝑉𝐵𝐶𝐴𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
3 simp2 1136 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐵𝐶)
4 reldom 8990 . . . . 5 Rel ≼
54brrelex1i 5745 . . . 4 (𝐴𝐵𝐴 ∈ V)
653ad2ant3 1134 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴 ∈ V)
7 simp1 1135 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐶𝑉)
83, 6, 7jca32 515 . 2 ((𝐶𝑉𝐵𝐶𝐴𝐵) → (𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)))
9 f1ss 6810 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵𝐶) → 𝑓:𝐴1-1𝐶)
10 vex 3482 . . . . . . 7 𝑓 ∈ V
11 f1dom4g 9005 . . . . . . 7 (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶𝑉) ∧ 𝑓:𝐴1-1𝐶) → 𝐴𝐶)
1210, 11mp3anl1 1454 . . . . . 6 (((𝐴 ∈ V ∧ 𝐶𝑉) ∧ 𝑓:𝐴1-1𝐶) → 𝐴𝐶)
1312ancoms 458 . . . . 5 ((𝑓:𝐴1-1𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶)
149, 13sylan 580 . . . 4 (((𝑓:𝐴1-1𝐵𝐵𝐶) ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶)
1514expl 457 . . 3 (𝑓:𝐴1-1𝐵 → ((𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶))
1615exlimiv 1928 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → ((𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶))
172, 8, 16sylc 65 1 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1776  wcel 2106  Vcvv 3478  wss 3963   class class class wbr 5148  1-1wf1 6560  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-dom 8986
This theorem is referenced by:  0sdom1dom  9272  rex2dom  9280
  Copyright terms: Public domain W3C validator