![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domssr | Structured version Visualization version GIF version |
Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
domssr | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 9018 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | |
2 | 1 | 3ad2ant3 1135 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | simp2 1137 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐵 ⊆ 𝐶) | |
4 | reldom 9009 | . . . . 5 ⊢ Rel ≼ | |
5 | 4 | brrelex1i 5756 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ V) |
7 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ 𝑉) | |
8 | 3, 6, 7 | jca32 515 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉))) |
9 | f1ss 6822 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝑓:𝐴–1-1→𝐶) | |
10 | vex 3492 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
11 | f1dom4g 9025 | . . . . . . 7 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 10, 11 | mp3anl1 1455 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 12 | ancoms 458 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
14 | 9, 13 | sylan 579 | . . . 4 ⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
15 | 14 | expl 457 | . . 3 ⊢ (𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
16 | 15 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
17 | 2, 8, 16 | sylc 65 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 –1-1→wf1 6570 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-dom 9005 |
This theorem is referenced by: 0sdom1dom 9301 rex2dom 9309 |
Copyright terms: Public domain | W3C validator |