![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domssr | Structured version Visualization version GIF version |
Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
domssr | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 8954 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | |
2 | 1 | 3ad2ant3 1136 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | simp2 1138 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐵 ⊆ 𝐶) | |
4 | reldom 8945 | . . . . 5 ⊢ Rel ≼ | |
5 | 4 | brrelex1i 5733 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
6 | 5 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ V) |
7 | simp1 1137 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ 𝑉) | |
8 | 3, 6, 7 | jca32 517 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉))) |
9 | f1ss 6794 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝑓:𝐴–1-1→𝐶) | |
10 | vex 3479 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
11 | f1dom4g 8961 | . . . . . . 7 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
12 | 10, 11 | mp3anl1 1456 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) ∧ 𝑓:𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
13 | 12 | ancoms 460 | . . . . 5 ⊢ ((𝑓:𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
14 | 9, 13 | sylan 581 | . . . 4 ⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶) |
15 | 14 | expl 459 | . . 3 ⊢ (𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
16 | 15 | exlimiv 1934 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → ((𝐵 ⊆ 𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ 𝑉)) → 𝐴 ≼ 𝐶)) |
17 | 2, 8, 16 | sylc 65 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 class class class wbr 5149 –1-1→wf1 6541 ≼ cdom 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-dom 8941 |
This theorem is referenced by: 0sdom1dom 9238 rex2dom 9246 |
Copyright terms: Public domain | W3C validator |