MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssr Structured version   Visualization version   GIF version

Theorem domssr 9059
Description: If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssr ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴𝐶)

Proof of Theorem domssr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 9018 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
213ad2ant3 1135 . 2 ((𝐶𝑉𝐵𝐶𝐴𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
3 simp2 1137 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐵𝐶)
4 reldom 9009 . . . . 5 Rel ≼
54brrelex1i 5756 . . . 4 (𝐴𝐵𝐴 ∈ V)
653ad2ant3 1135 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴 ∈ V)
7 simp1 1136 . . 3 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐶𝑉)
83, 6, 7jca32 515 . 2 ((𝐶𝑉𝐵𝐶𝐴𝐵) → (𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)))
9 f1ss 6822 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵𝐶) → 𝑓:𝐴1-1𝐶)
10 vex 3492 . . . . . . 7 𝑓 ∈ V
11 f1dom4g 9025 . . . . . . 7 (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶𝑉) ∧ 𝑓:𝐴1-1𝐶) → 𝐴𝐶)
1210, 11mp3anl1 1455 . . . . . 6 (((𝐴 ∈ V ∧ 𝐶𝑉) ∧ 𝑓:𝐴1-1𝐶) → 𝐴𝐶)
1312ancoms 458 . . . . 5 ((𝑓:𝐴1-1𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶)
149, 13sylan 579 . . . 4 (((𝑓:𝐴1-1𝐵𝐵𝐶) ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶)
1514expl 457 . . 3 (𝑓:𝐴1-1𝐵 → ((𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶))
1615exlimiv 1929 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → ((𝐵𝐶 ∧ (𝐴 ∈ V ∧ 𝐶𝑉)) → 𝐴𝐶))
172, 8, 16sylc 65 1 ((𝐶𝑉𝐵𝐶𝐴𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1777  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  1-1wf1 6570  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-dom 9005
This theorem is referenced by:  0sdom1dom  9301  rex2dom  9309
  Copyright terms: Public domain W3C validator