| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domssl | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| domssl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
| 2 | reldom 8973 | . . . 4 ⊢ Rel ≼ | |
| 3 | 2 | brrelex12i 5720 | . . 3 ⊢ (𝐵 ≼ 𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| 4 | simpl 482 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ⊆ 𝐵) | |
| 5 | ssexg 5303 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 6 | 5 | adantrr 717 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V) |
| 7 | simprr 772 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V) | |
| 8 | 4, 6, 7 | jca32 515 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
| 9 | 3, 8 | sylan2 593 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
| 10 | brdomi 8981 | . . 3 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
| 11 | f1ssres 6791 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) | |
| 12 | vex 3467 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 13 | 12 | resex 6027 | . . . . . . . 8 ⊢ (𝑓 ↾ 𝐴) ∈ V |
| 14 | f1dom4g 8988 | . . . . . . . 8 ⊢ ((((𝑓 ↾ 𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 15 | 13, 14 | mp3anl1 1456 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
| 16 | 15 | ancoms 458 | . . . . . 6 ⊢ (((𝑓 ↾ 𝐴):𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
| 17 | 11, 16 | sylan 580 | . . . . 5 ⊢ (((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
| 18 | 17 | expl 457 | . . . 4 ⊢ (𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 19 | 18 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 20 | 10, 19 | syl 17 | . 2 ⊢ (𝐵 ≼ 𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 21 | 1, 9, 20 | sylc 65 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 class class class wbr 5123 ↾ cres 5667 –1-1→wf1 6538 ≼ cdom 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-dom 8969 |
| This theorem is referenced by: ssct 9073 1sdom2dom 9265 |
| Copyright terms: Public domain | W3C validator |