![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domssl | Structured version Visualization version GIF version |
Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
domssl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
2 | reldom 8980 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex12i 5737 | . . 3 ⊢ (𝐵 ≼ 𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
4 | simpl 481 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ⊆ 𝐵) | |
5 | ssexg 5328 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
6 | 5 | adantrr 715 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V) |
7 | simprr 771 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V) | |
8 | 4, 6, 7 | jca32 514 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
9 | 3, 8 | sylan2 591 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
10 | brdomi 8989 | . . 3 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
11 | f1ssres 6805 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) | |
12 | vex 3466 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
13 | 12 | resex 6038 | . . . . . . . 8 ⊢ (𝑓 ↾ 𝐴) ∈ V |
14 | f1dom4g 8996 | . . . . . . . 8 ⊢ ((((𝑓 ↾ 𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
15 | 13, 14 | mp3anl1 1452 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
16 | 15 | ancoms 457 | . . . . . 6 ⊢ (((𝑓 ↾ 𝐴):𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
17 | 11, 16 | sylan 578 | . . . . 5 ⊢ (((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
18 | 17 | expl 456 | . . . 4 ⊢ (𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
19 | 18 | exlimiv 1926 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝐵 ≼ 𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
21 | 1, 9, 20 | sylc 65 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1774 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ↾ cres 5684 –1-1→wf1 6551 ≼ cdom 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-dom 8976 |
This theorem is referenced by: ssct 9089 1sdom2dom 9281 |
Copyright terms: Public domain | W3C validator |