MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssl Structured version   Visualization version   GIF version

Theorem domssl 8971
Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssl ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domssl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
2 reldom 8926 . . . 4 Rel ≼
32brrelex12i 5695 . . 3 (𝐵𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4 simpl 482 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐵)
5 ssexg 5280 . . . . 5 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
65adantrr 717 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V)
7 simprr 772 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V)
84, 6, 7jca32 515 . . 3 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)))
93, 8sylan2 593 . 2 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)))
10 brdomi 8933 . . 3 (𝐵𝐶 → ∃𝑓 𝑓:𝐵1-1𝐶)
11 f1ssres 6765 . . . . . 6 ((𝑓:𝐵1-1𝐶𝐴𝐵) → (𝑓𝐴):𝐴1-1𝐶)
12 vex 3454 . . . . . . . . 9 𝑓 ∈ V
1312resex 6002 . . . . . . . 8 (𝑓𝐴) ∈ V
14 f1dom4g 8939 . . . . . . . 8 ((((𝑓𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓𝐴):𝐴1-1𝐶) → 𝐴𝐶)
1513, 14mp3anl1 1457 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓𝐴):𝐴1-1𝐶) → 𝐴𝐶)
1615ancoms 458 . . . . . 6 (((𝑓𝐴):𝐴1-1𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶)
1711, 16sylan 580 . . . . 5 (((𝑓:𝐵1-1𝐶𝐴𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶)
1817expl 457 . . . 4 (𝑓:𝐵1-1𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
1918exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐵1-1𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
2010, 19syl 17 . 2 (𝐵𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
211, 9, 20sylc 65 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  Vcvv 3450  wss 3916   class class class wbr 5109  cres 5642  1-1wf1 6510  cdom 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-dom 8922
This theorem is referenced by:  ssct  9024  1sdom2dom  9200
  Copyright terms: Public domain W3C validator