| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domssl | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| domssl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
| 2 | reldom 8926 | . . . 4 ⊢ Rel ≼ | |
| 3 | 2 | brrelex12i 5695 | . . 3 ⊢ (𝐵 ≼ 𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| 4 | simpl 482 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ⊆ 𝐵) | |
| 5 | ssexg 5280 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 6 | 5 | adantrr 717 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V) |
| 7 | simprr 772 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V) | |
| 8 | 4, 6, 7 | jca32 515 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
| 9 | 3, 8 | sylan2 593 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
| 10 | brdomi 8933 | . . 3 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
| 11 | f1ssres 6765 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) | |
| 12 | vex 3454 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 13 | 12 | resex 6002 | . . . . . . . 8 ⊢ (𝑓 ↾ 𝐴) ∈ V |
| 14 | f1dom4g 8939 | . . . . . . . 8 ⊢ ((((𝑓 ↾ 𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
| 15 | 13, 14 | mp3anl1 1457 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
| 16 | 15 | ancoms 458 | . . . . . 6 ⊢ (((𝑓 ↾ 𝐴):𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
| 17 | 11, 16 | sylan 580 | . . . . 5 ⊢ (((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
| 18 | 17 | expl 457 | . . . 4 ⊢ (𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 19 | 18 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 20 | 10, 19 | syl 17 | . 2 ⊢ (𝐵 ≼ 𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
| 21 | 1, 9, 20 | sylc 65 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 class class class wbr 5109 ↾ cres 5642 –1-1→wf1 6510 ≼ cdom 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-dom 8922 |
| This theorem is referenced by: ssct 9024 1sdom2dom 9200 |
| Copyright terms: Public domain | W3C validator |