Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domssl | Structured version Visualization version GIF version |
Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
domssl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
2 | reldom 8770 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex12i 5653 | . . 3 ⊢ (𝐵 ≼ 𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
4 | simpl 484 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ⊆ 𝐵) | |
5 | ssexg 5256 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
6 | 5 | adantrr 715 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V) |
7 | simprr 771 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V) | |
8 | 4, 6, 7 | jca32 517 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
9 | 3, 8 | sylan2 594 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V))) |
10 | brdomi 8779 | . . 3 ⊢ (𝐵 ≼ 𝐶 → ∃𝑓 𝑓:𝐵–1-1→𝐶) | |
11 | f1ssres 6708 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) | |
12 | vex 3441 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
13 | 12 | resex 5951 | . . . . . . . 8 ⊢ (𝑓 ↾ 𝐴) ∈ V |
14 | f1dom4g 8786 | . . . . . . . 8 ⊢ ((((𝑓 ↾ 𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) | |
15 | 13, 14 | mp3anl1 1455 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓 ↾ 𝐴):𝐴–1-1→𝐶) → 𝐴 ≼ 𝐶) |
16 | 15 | ancoms 460 | . . . . . 6 ⊢ (((𝑓 ↾ 𝐴):𝐴–1-1→𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
17 | 11, 16 | sylan 581 | . . . . 5 ⊢ (((𝑓:𝐵–1-1→𝐶 ∧ 𝐴 ⊆ 𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶) |
18 | 17 | expl 459 | . . . 4 ⊢ (𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
19 | 18 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1→𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝐵 ≼ 𝐶 → ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ≼ 𝐶)) |
21 | 1, 9, 20 | sylc 65 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1779 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 ↾ cres 5602 –1-1→wf1 6455 ≼ cdom 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-dom 8766 |
This theorem is referenced by: ssct 8876 1sdom2dom 9068 |
Copyright terms: Public domain | W3C validator |