MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssl Structured version   Visualization version   GIF version

Theorem domssl 8930
Description: If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssl ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domssl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
2 reldom 8884 . . . 4 Rel ≼
32brrelex12i 5676 . . 3 (𝐵𝐶 → (𝐵 ∈ V ∧ 𝐶 ∈ V))
4 simpl 482 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐵)
5 ssexg 5265 . . . . 5 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
65adantrr 717 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ V)
7 simprr 772 . . . 4 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V)
84, 6, 7jca32 515 . . 3 ((𝐴𝐵 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)))
93, 8sylan2 593 . 2 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)))
10 brdomi 8891 . . 3 (𝐵𝐶 → ∃𝑓 𝑓:𝐵1-1𝐶)
11 f1ssres 6734 . . . . . 6 ((𝑓:𝐵1-1𝐶𝐴𝐵) → (𝑓𝐴):𝐴1-1𝐶)
12 vex 3442 . . . . . . . . 9 𝑓 ∈ V
1312resex 5985 . . . . . . . 8 (𝑓𝐴) ∈ V
14 f1dom4g 8897 . . . . . . . 8 ((((𝑓𝐴) ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓𝐴):𝐴1-1𝐶) → 𝐴𝐶)
1513, 14mp3anl1 1457 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑓𝐴):𝐴1-1𝐶) → 𝐴𝐶)
1615ancoms 458 . . . . . 6 (((𝑓𝐴):𝐴1-1𝐶 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶)
1711, 16sylan 580 . . . . 5 (((𝑓:𝐵1-1𝐶𝐴𝐵) ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶)
1817expl 457 . . . 4 (𝑓:𝐵1-1𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
1918exlimiv 1931 . . 3 (∃𝑓 𝑓:𝐵1-1𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
2010, 19syl 17 . 2 (𝐵𝐶 → ((𝐴𝐵 ∧ (𝐴 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐶))
211, 9, 20sylc 65 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  Vcvv 3438  wss 3899   class class class wbr 5095  cres 5623  1-1wf1 6486  cdom 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-dom 8880
This theorem is referenced by:  ssct  8981  1sdom2dom  9148
  Copyright terms: Public domain W3C validator