MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdif1en Structured version   Visualization version   GIF version

Theorem rexdif1en 9177
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7734. (Revised by BTernaryTau, 5-Jan-2025.)
Assertion
Ref Expression
rexdif1en ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀

Proof of Theorem rexdif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8972 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
21simpld 494 . . . 4 (𝐴 ≈ suc 𝑀𝐴 ∈ V)
3 breng 8973 . . . . . . 7 ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
41, 3syl 17 . . . . . 6 (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
54ibi 267 . . . . 5 (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
6 sucidg 6440 . . . . . . . . . 10 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
7 f1ocnvdm 7283 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
87ancoms 458 . . . . . . . . . 10 ((𝑀 ∈ suc 𝑀𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
96, 8sylan 580 . . . . . . . . 9 ((𝑀 ∈ On ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
109adantll 714 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
11 vex 3468 . . . . . . . . 9 𝑓 ∈ V
12 dif1enlem 9175 . . . . . . . . 9 (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
1311, 12mp3anl1 1457 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
14 sneq 4616 . . . . . . . . . . 11 (𝑥 = (𝑓𝑀) → {𝑥} = {(𝑓𝑀)})
1514difeq2d 4106 . . . . . . . . . 10 (𝑥 = (𝑓𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(𝑓𝑀)}))
1615breq1d 5134 . . . . . . . . 9 (𝑥 = (𝑓𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀))
1716rspcev 3606 . . . . . . . 8 (((𝑓𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1810, 13, 17syl2anc 584 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1918ex 412 . . . . . 6 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴1-1-onto→suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2019exlimdv 1933 . . . . 5 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
215, 20syl5 34 . . . 4 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
222, 21sylan 580 . . 3 ((𝐴 ≈ suc 𝑀𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2322ancoms 458 . 2 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2423syldbl2 841 1 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3061  Vcvv 3464  cdif 3928  {csn 4606   class class class wbr 5124  ccnv 5658  Oncon0 6357  suc csuc 6359  1-1-ontowf1o 6535  cfv 6536  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-en 8965
This theorem is referenced by:  findcard2  9183  enp1i  9290
  Copyright terms: Public domain W3C validator