![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version |
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7719. (Revised by BTernaryTau, 5-Jan-2025.) |
Ref | Expression |
---|---|
rexdif1en | ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8944 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
2 | 1 | simpld 494 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
3 | breng 8945 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) |
5 | 4 | ibi 267 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) |
6 | sucidg 6436 | . . . . . . . . . 10 ⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) | |
7 | f1ocnvdm 7276 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
8 | 7 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
9 | 6, 8 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑀 ∈ On ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
10 | 9 | adantll 711 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
11 | vex 3470 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
12 | dif1enlem 9153 | . . . . . . . . 9 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
13 | 11, 12 | mp3anl1 1451 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
14 | sneq 4631 | . . . . . . . . . . 11 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
15 | 14 | difeq2d 4115 | . . . . . . . . . 10 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
16 | 15 | breq1d 5149 | . . . . . . . . 9 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
17 | 16 | rspcev 3604 | . . . . . . . 8 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | 10, 13, 17 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
20 | 19 | exlimdv 1928 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
21 | 5, 20 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
22 | 2, 21 | sylan 579 | . . 3 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
23 | 22 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
24 | 23 | syldbl2 838 | 1 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 ∖ cdif 3938 {csn 4621 class class class wbr 5139 ◡ccnv 5666 Oncon0 6355 suc csuc 6357 –1-1-onto→wf1o 6533 ‘cfv 6534 ≈ cen 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-en 8937 |
This theorem is referenced by: findcard2 9161 enp1i 9276 |
Copyright terms: Public domain | W3C validator |