| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version | ||
| Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7663. (Revised by BTernaryTau, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| rexdif1en | ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8872 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
| 2 | 1 | simpld 494 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
| 3 | breng 8873 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) |
| 5 | 4 | ibi 267 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) |
| 6 | sucidg 6384 | . . . . . . . . . 10 ⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) | |
| 7 | f1ocnvdm 7214 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
| 8 | 7 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 9 | 6, 8 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑀 ∈ On ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 10 | 9 | adantll 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 11 | vex 3440 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 12 | dif1enlem 9064 | . . . . . . . . 9 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
| 13 | 11, 12 | mp3anl1 1457 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
| 14 | sneq 4581 | . . . . . . . . . . 11 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
| 15 | 14 | difeq2d 4071 | . . . . . . . . . 10 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
| 16 | 15 | breq1d 5096 | . . . . . . . . 9 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
| 17 | 16 | rspcev 3572 | . . . . . . . 8 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 18 | 10, 13, 17 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 20 | 19 | exlimdv 1934 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 21 | 5, 20 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 22 | 2, 21 | sylan 580 | . . 3 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 23 | 22 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 24 | 23 | syldbl2 841 | 1 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 {csn 4571 class class class wbr 5086 ◡ccnv 5610 Oncon0 6301 suc csuc 6303 –1-1-onto→wf1o 6475 ‘cfv 6476 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-en 8865 |
| This theorem is referenced by: findcard2 9069 enp1i 9158 |
| Copyright terms: Public domain | W3C validator |