MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdif1en Structured version   Visualization version   GIF version

Theorem rexdif1en 8737
Description: If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.)
Assertion
Ref Expression
rexdif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀

Proof of Theorem rexdif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8541 . 2 (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
2 19.42v 1954 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
3 sucidg 6251 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
4 f1ocnvdm 7038 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
54ancoms 462 . . . . . 6 ((𝑀 ∈ suc 𝑀𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
63, 5sylan 583 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
7 vex 3413 . . . . . 6 𝑓 ∈ V
8 dif1enlem 8736 . . . . . 6 ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
97, 8mp3an1 1445 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
10 sneq 4535 . . . . . . . 8 (𝑥 = (𝑓𝑀) → {𝑥} = {(𝑓𝑀)})
1110difeq2d 4030 . . . . . . 7 (𝑥 = (𝑓𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(𝑓𝑀)}))
1211breq1d 5045 . . . . . 6 (𝑥 = (𝑓𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀))
1312rspcev 3543 . . . . 5 (((𝑓𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
146, 9, 13syl2anc 587 . . . 4 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1514exlimiv 1931 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
162, 15sylbir 238 . 2 ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
171, 16sylan2b 596 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3071  Vcvv 3409  cdif 3857  {csn 4525   class class class wbr 5035  ccnv 5526  suc csuc 6175  1-1-ontowf1o 6338  cfv 6339  ωcom 7584  cen 8529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7585  df-en 8533
This theorem is referenced by:  findcard2  8740
  Copyright terms: Public domain W3C validator