MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdif1en Structured version   Visualization version   GIF version

Theorem rexdif1en 9155
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7719. (Revised by BTernaryTau, 5-Jan-2025.)
Assertion
Ref Expression
rexdif1en ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀

Proof of Theorem rexdif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8944 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
21simpld 494 . . . 4 (𝐴 ≈ suc 𝑀𝐴 ∈ V)
3 breng 8945 . . . . . . 7 ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
41, 3syl 17 . . . . . 6 (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
54ibi 267 . . . . 5 (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
6 sucidg 6436 . . . . . . . . . 10 (𝑀 ∈ On → 𝑀 ∈ suc 𝑀)
7 f1ocnvdm 7276 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
87ancoms 458 . . . . . . . . . 10 ((𝑀 ∈ suc 𝑀𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
96, 8sylan 579 . . . . . . . . 9 ((𝑀 ∈ On ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
109adantll 711 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
11 vex 3470 . . . . . . . . 9 𝑓 ∈ V
12 dif1enlem 9153 . . . . . . . . 9 (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
1311, 12mp3anl1 1451 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
14 sneq 4631 . . . . . . . . . . 11 (𝑥 = (𝑓𝑀) → {𝑥} = {(𝑓𝑀)})
1514difeq2d 4115 . . . . . . . . . 10 (𝑥 = (𝑓𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(𝑓𝑀)}))
1615breq1d 5149 . . . . . . . . 9 (𝑥 = (𝑓𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀))
1716rspcev 3604 . . . . . . . 8 (((𝑓𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1810, 13, 17syl2anc 583 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1918ex 412 . . . . . 6 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴1-1-onto→suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2019exlimdv 1928 . . . . 5 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
215, 20syl5 34 . . . 4 ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
222, 21sylan 579 . . 3 ((𝐴 ≈ suc 𝑀𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2322ancoms 458 . 2 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀))
2423syldbl2 838 1 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wrex 3062  Vcvv 3466  cdif 3938  {csn 4621   class class class wbr 5139  ccnv 5666  Oncon0 6355  suc csuc 6357  1-1-ontowf1o 6533  cfv 6534  cen 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-en 8937
This theorem is referenced by:  findcard2  9161  enp1i  9276
  Copyright terms: Public domain W3C validator