![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version |
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7722. (Revised by BTernaryTau, 5-Jan-2025.) |
Ref | Expression |
---|---|
rexdif1en | ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8949 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
2 | 1 | simpld 494 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
3 | breng 8950 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) |
5 | 4 | ibi 267 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) |
6 | sucidg 6439 | . . . . . . . . . 10 ⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) | |
7 | f1ocnvdm 7279 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
8 | 7 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
9 | 6, 8 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑀 ∈ On ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
10 | 9 | adantll 711 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
11 | vex 3472 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
12 | dif1enlem 9158 | . . . . . . . . 9 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
13 | 11, 12 | mp3anl1 1451 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
14 | sneq 4633 | . . . . . . . . . . 11 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
15 | 14 | difeq2d 4117 | . . . . . . . . . 10 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
16 | 15 | breq1d 5151 | . . . . . . . . 9 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
17 | 16 | rspcev 3606 | . . . . . . . 8 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | 10, 13, 17 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
20 | 19 | exlimdv 1928 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
21 | 5, 20 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
22 | 2, 21 | sylan 579 | . . 3 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
23 | 22 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
24 | 23 | syldbl2 838 | 1 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 ∖ cdif 3940 {csn 4623 class class class wbr 5141 ◡ccnv 5668 Oncon0 6358 suc csuc 6360 –1-1-onto→wf1o 6536 ‘cfv 6537 ≈ cen 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-en 8942 |
This theorem is referenced by: findcard2 9166 enp1i 9281 |
Copyright terms: Public domain | W3C validator |