| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version | ||
| Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7727. (Revised by BTernaryTau, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| rexdif1en | ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8965 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
| 2 | 1 | simpld 494 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
| 3 | breng 8966 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) |
| 5 | 4 | ibi 267 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) |
| 6 | sucidg 6434 | . . . . . . . . . 10 ⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) | |
| 7 | f1ocnvdm 7277 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
| 8 | 7 | ancoms 458 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 9 | 6, 8 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑀 ∈ On ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 10 | 9 | adantll 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 11 | vex 3463 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 12 | dif1enlem 9168 | . . . . . . . . 9 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
| 13 | 11, 12 | mp3anl1 1457 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
| 14 | sneq 4611 | . . . . . . . . . . 11 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
| 15 | 14 | difeq2d 4101 | . . . . . . . . . 10 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
| 16 | 15 | breq1d 5129 | . . . . . . . . 9 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
| 17 | 16 | rspcev 3601 | . . . . . . . 8 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 18 | 10, 13, 17 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 20 | 19 | exlimdv 1933 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 21 | 5, 20 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 22 | 2, 21 | sylan 580 | . . 3 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 23 | 22 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
| 24 | 23 | syldbl2 841 | 1 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∖ cdif 3923 {csn 4601 class class class wbr 5119 ◡ccnv 5653 Oncon0 6352 suc csuc 6354 –1-1-onto→wf1o 6529 ‘cfv 6530 ≈ cen 8954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-en 8958 |
| This theorem is referenced by: findcard2 9176 enp1i 9283 |
| Copyright terms: Public domain | W3C validator |