Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version |
Description: If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) |
Ref | Expression |
---|---|
rexdif1en | ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8743 | . 2 ⊢ (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) | |
2 | 19.42v 1957 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
3 | sucidg 6344 | . . . . . 6 ⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) | |
4 | f1ocnvdm 7157 | . . . . . . 7 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
5 | 4 | ancoms 459 | . . . . . 6 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
6 | 3, 5 | sylan 580 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
7 | vex 3436 | . . . . . 6 ⊢ 𝑓 ∈ V | |
8 | dif1enlem 8943 | . . . . . 6 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
9 | 7, 8 | mp3an1 1447 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
10 | sneq 4571 | . . . . . . . 8 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
11 | 10 | difeq2d 4057 | . . . . . . 7 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
12 | 11 | breq1d 5084 | . . . . . 6 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
13 | 12 | rspcev 3561 | . . . . 5 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
14 | 6, 9, 13 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
15 | 14 | exlimiv 1933 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
16 | 2, 15 | sylbir 234 | . 2 ⊢ ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
17 | 1, 16 | sylan2b 594 | 1 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 {csn 4561 class class class wbr 5074 ◡ccnv 5588 suc csuc 6268 –1-1-onto→wf1o 6432 ‘cfv 6433 ωcom 7712 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-en 8734 |
This theorem is referenced by: findcard2 8947 |
Copyright terms: Public domain | W3C validator |