Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexdif1en | Structured version Visualization version GIF version |
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7662. (Revised by BTernaryTau, 5-Jan-2025.) |
Ref | Expression |
---|---|
rexdif1en | ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8824 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
2 | 1 | simpld 496 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝐴 ∈ V) |
3 | breng 8825 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ suc 𝑀 ∈ V) → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) |
5 | 4 | ibi 267 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) |
6 | sucidg 6394 | . . . . . . . . . 10 ⊢ (𝑀 ∈ On → 𝑀 ∈ suc 𝑀) | |
7 | f1ocnvdm 7225 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
8 | 7 | ancoms 460 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
9 | 6, 8 | sylan 581 | . . . . . . . . 9 ⊢ ((𝑀 ∈ On ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
10 | 9 | adantll 712 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
11 | vex 3447 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
12 | dif1enlem 9033 | . . . . . . . . 9 ⊢ (((𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
13 | 11, 12 | mp3anl1 1455 | . . . . . . . 8 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
14 | sneq 4594 | . . . . . . . . . . 11 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
15 | 14 | difeq2d 4080 | . . . . . . . . . 10 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
16 | 15 | breq1d 5113 | . . . . . . . . 9 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
17 | 16 | rspcev 3579 | . . . . . . . 8 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | 10, 13, 17 | syl2anc 585 | . . . . . . 7 ⊢ (((𝐴 ∈ V ∧ 𝑀 ∈ On) ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
19 | 18 | ex 414 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
20 | 19 | exlimdv 1936 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
21 | 5, 20 | syl5 34 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
22 | 2, 21 | sylan 581 | . . 3 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑀 ∈ On) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
23 | 22 | ancoms 460 | . 2 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)) |
24 | 23 | syldbl2 839 | 1 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3071 Vcvv 3443 ∖ cdif 3905 {csn 4584 class class class wbr 5103 ◡ccnv 5629 Oncon0 6313 suc csuc 6315 –1-1-onto→wf1o 6490 ‘cfv 6491 ≈ cen 8813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-en 8817 |
This theorem is referenced by: findcard2 9041 enp1i 9156 |
Copyright terms: Public domain | W3C validator |