MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdif1en Structured version   Visualization version   GIF version

Theorem rexdif1en 8944
Description: If a set is equinumerous to a nonzero finite ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.)
Assertion
Ref Expression
rexdif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀

Proof of Theorem rexdif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8743 . 2 (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
2 19.42v 1957 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
3 sucidg 6344 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
4 f1ocnvdm 7157 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
54ancoms 459 . . . . . 6 ((𝑀 ∈ suc 𝑀𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
63, 5sylan 580 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
7 vex 3436 . . . . . 6 𝑓 ∈ V
8 dif1enlem 8943 . . . . . 6 ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
97, 8mp3an1 1447 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
10 sneq 4571 . . . . . . . 8 (𝑥 = (𝑓𝑀) → {𝑥} = {(𝑓𝑀)})
1110difeq2d 4057 . . . . . . 7 (𝑥 = (𝑓𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(𝑓𝑀)}))
1211breq1d 5084 . . . . . 6 (𝑥 = (𝑓𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀))
1312rspcev 3561 . . . . 5 (((𝑓𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
146, 9, 13syl2anc 584 . . . 4 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1514exlimiv 1933 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
162, 15sylbir 234 . 2 ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
171, 16sylan2b 594 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  cdif 3884  {csn 4561   class class class wbr 5074  ccnv 5588  suc csuc 6268  1-1-ontowf1o 6432  cfv 6433  ωcom 7712  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734
This theorem is referenced by:  findcard2  8947
  Copyright terms: Public domain W3C validator