MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3anr1 Structured version   Visualization version   GIF version

Theorem mp3anr1 1458
Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
mp3anr1.1 𝜓
mp3anr1.2 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
mp3anr1 ((𝜑 ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem mp3anr1
StepHypRef Expression
1 mp3anr1.1 . . 3 𝜓
2 mp3anr1.2 . . . 4 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
32ancoms 459 . . 3 (((𝜓𝜒𝜃) ∧ 𝜑) → 𝜏)
41, 3mp3anl1 1455 . 2 (((𝜒𝜃) ∧ 𝜑) → 𝜏)
54ancoms 459 1 ((𝜑 ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  vc2OLD  29684  vc0  29690  vcm  29692  nvaddsub4  29773  nvpi  29783  nvge0  29789  ipval3  29825  ipidsq  29826  lnoadd  29874  lnosub  29875  dipsubdir  29964  finorwe  36065
  Copyright terms: Public domain W3C validator