Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3anr1 Structured version   Visualization version   GIF version

Theorem mp3anr1 1454
 Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
mp3anr1.1 𝜓
mp3anr1.2 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
mp3anr1 ((𝜑 ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem mp3anr1
StepHypRef Expression
1 mp3anr1.1 . . 3 𝜓
2 mp3anr1.2 . . . 4 ((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜏)
32ancoms 461 . . 3 (((𝜓𝜒𝜃) ∧ 𝜑) → 𝜏)
41, 3mp3anl1 1451 . 2 (((𝜒𝜃) ∧ 𝜑) → 𝜏)
54ancoms 461 1 ((𝜑 ∧ (𝜒𝜃)) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 209  df-an 399  df-3an 1085 This theorem is referenced by:  vc2OLD  28330  vc0  28336  vcm  28338  nvaddsub4  28419  nvpi  28429  nvge0  28435  ipval3  28471  ipidsq  28472  lnoadd  28520  lnosub  28521  dipsubdir  28610  finorwe  34680
 Copyright terms: Public domain W3C validator