MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Structured version   Visualization version   GIF version

Theorem nvge0 27856
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1 𝑋 = (BaseSet‘𝑈)
nvge0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvge0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))

Proof of Theorem nvge0
StepHypRef Expression
1 2rp 12051 . . 3 2 ∈ ℝ+
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 2 ∈ ℝ+)
3 nvge0.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvge0.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 27844 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
6 eqid 2806 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
76, 4nvz0 27851 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
87adantr 468 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
9 1pneg1e0 11411 . . . . . . . . 9 (1 + -1) = 0
109oveq1i 6884 . . . . . . . 8 ((1 + -1)( ·𝑠OLD𝑈)𝐴) = (0( ·𝑠OLD𝑈)𝐴)
11 eqid 2806 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
123, 11, 6nv0 27820 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0( ·𝑠OLD𝑈)𝐴) = (0vec𝑈))
1310, 12syl5req 2853 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = ((1 + -1)( ·𝑠OLD𝑈)𝐴))
14 neg1cn 11406 . . . . . . . 8 -1 ∈ ℂ
15 ax-1cn 10279 . . . . . . . . 9 1 ∈ ℂ
16 eqid 2806 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 11nvdir 27814 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1815, 17mp3anr1 1575 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1914, 18mpanr1 686 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
203, 11nvsid 27810 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
2120oveq1d 6889 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2213, 19, 213eqtrd 2844 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2322fveq2d 6412 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
248, 23eqtr3d 2842 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
253, 11nvscl 27809 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
2614, 25mp3an2 1566 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
273, 16, 4nvtri 27853 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2826, 27mpd3an3 1579 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2924, 28eqbrtrd 4866 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
303, 11, 4nvm1 27848 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐴)) = (𝑁𝐴))
3130oveq2d 6890 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = ((𝑁𝐴) + (𝑁𝐴)))
325recnd 10353 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
33322timesd 11542 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (2 · (𝑁𝐴)) = ((𝑁𝐴) + (𝑁𝐴)))
3431, 33eqtr4d 2843 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = (2 · (𝑁𝐴)))
3529, 34breqtrd 4870 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (2 · (𝑁𝐴)))
362, 5, 35prodge0rd 12151 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156   class class class wbr 4844  cfv 6101  (class class class)co 6874  cc 10219  0cc0 10221  1c1 10222   + caddc 10224   · cmul 10226  cle 10360  -cneg 10552  2c2 11356  +crp 12046  NrmCVeccnv 27767   +𝑣 cpv 27768  BaseSetcba 27769   ·𝑠OLD cns 27770  0veccn0v 27771  normCVcnmcv 27773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-sup 8587  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644  df-uz 11905  df-rp 12047  df-seq 13025  df-exp 13084  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-grpo 27676  df-gid 27677  df-ginv 27678  df-ablo 27728  df-vc 27742  df-nv 27775  df-va 27778  df-ba 27779  df-sm 27780  df-0v 27781  df-nmcv 27783
This theorem is referenced by:  nvgt0  27857  smcnlem  27880  ipnm  27894  nmooge0  27950  nmoub3i  27956  siilem1  28034  siii  28036  ubthlem3  28056  minvecolem1  28058  minvecolem5  28065  minvecolem6  28066  htthlem  28102
  Copyright terms: Public domain W3C validator