Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvge0 | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvge0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvge0.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12664 | . . 3 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 2 ∈ ℝ+) |
3 | nvge0.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | nvge0.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 3, 4 | nvcl 28924 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
6 | eqid 2738 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | 6, 4 | nvz0 28931 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
9 | 1pneg1e0 12022 | . . . . . . . . 9 ⊢ (1 + -1) = 0 | |
10 | 9 | oveq1i 7265 | . . . . . . . 8 ⊢ ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = (0( ·𝑠OLD ‘𝑈)𝐴) |
11 | eqid 2738 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 3, 11, 6 | nv0 28900 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0( ·𝑠OLD ‘𝑈)𝐴) = (0vec‘𝑈)) |
13 | 10, 12 | eqtr2id 2792 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴)) |
14 | neg1cn 12017 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
15 | ax-1cn 10860 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
16 | eqid 2738 | . . . . . . . . . 10 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
17 | 3, 16, 11 | nvdir 28894 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
18 | 15, 17 | mp3anr1 1456 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
19 | 14, 18 | mpanr1 699 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
20 | 3, 11 | nvsid 28890 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
21 | 20 | oveq1d 7270 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
22 | 13, 19, 21 | 3eqtrd 2782 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
23 | 22 | fveq2d 6760 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
24 | 8, 23 | eqtr3d 2780 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
25 | 3, 11 | nvscl 28889 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
26 | 14, 25 | mp3an2 1447 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
27 | 3, 16, 4 | nvtri 28933 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
28 | 26, 27 | mpd3an3 1460 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
29 | 24, 28 | eqbrtrd 5092 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
30 | 3, 11, 4 | nvm1 28928 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘𝐴)) |
31 | 30 | oveq2d 7271 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
32 | 5 | recnd 10934 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
33 | 32 | 2timesd 12146 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (2 · (𝑁‘𝐴)) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
34 | 31, 33 | eqtr4d 2781 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = (2 · (𝑁‘𝐴))) |
35 | 29, 34 | breqtrd 5096 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (2 · (𝑁‘𝐴))) |
36 | 2, 5, 35 | prodge0rd 12766 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 -cneg 11136 2c2 11958 ℝ+crp 12659 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 0veccn0v 28851 normCVcnmcv 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 |
This theorem is referenced by: nvgt0 28937 smcnlem 28960 ipnm 28974 nmooge0 29030 nmoub3i 29036 siilem1 29114 siii 29116 ubthlem3 29135 minvecolem1 29137 minvecolem5 29144 minvecolem6 29145 htthlem 29180 |
Copyright terms: Public domain | W3C validator |