Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvge0 | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvge0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvge0.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12735 | . . 3 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 2 ∈ ℝ+) |
3 | nvge0.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | nvge0.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 3, 4 | nvcl 29023 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
6 | eqid 2738 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | 6, 4 | nvz0 29030 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
9 | 1pneg1e0 12092 | . . . . . . . . 9 ⊢ (1 + -1) = 0 | |
10 | 9 | oveq1i 7285 | . . . . . . . 8 ⊢ ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = (0( ·𝑠OLD ‘𝑈)𝐴) |
11 | eqid 2738 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 3, 11, 6 | nv0 28999 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0( ·𝑠OLD ‘𝑈)𝐴) = (0vec‘𝑈)) |
13 | 10, 12 | eqtr2id 2791 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴)) |
14 | neg1cn 12087 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
15 | ax-1cn 10929 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
16 | eqid 2738 | . . . . . . . . . 10 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
17 | 3, 16, 11 | nvdir 28993 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
18 | 15, 17 | mp3anr1 1457 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
19 | 14, 18 | mpanr1 700 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
20 | 3, 11 | nvsid 28989 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
21 | 20 | oveq1d 7290 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
22 | 13, 19, 21 | 3eqtrd 2782 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
23 | 22 | fveq2d 6778 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
24 | 8, 23 | eqtr3d 2780 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
25 | 3, 11 | nvscl 28988 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
26 | 14, 25 | mp3an2 1448 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
27 | 3, 16, 4 | nvtri 29032 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
28 | 26, 27 | mpd3an3 1461 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
29 | 24, 28 | eqbrtrd 5096 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
30 | 3, 11, 4 | nvm1 29027 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘𝐴)) |
31 | 30 | oveq2d 7291 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
32 | 5 | recnd 11003 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
33 | 32 | 2timesd 12216 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (2 · (𝑁‘𝐴)) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
34 | 31, 33 | eqtr4d 2781 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = (2 · (𝑁‘𝐴))) |
35 | 29, 34 | breqtrd 5100 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (2 · (𝑁‘𝐴))) |
36 | 2, 5, 35 | prodge0rd 12837 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 -cneg 11206 2c2 12028 ℝ+crp 12730 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 0veccn0v 28950 normCVcnmcv 28952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-grpo 28855 df-gid 28856 df-ginv 28857 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 |
This theorem is referenced by: nvgt0 29036 smcnlem 29059 ipnm 29073 nmooge0 29129 nmoub3i 29135 siilem1 29213 siii 29215 ubthlem3 29234 minvecolem1 29236 minvecolem5 29243 minvecolem6 29244 htthlem 29279 |
Copyright terms: Public domain | W3C validator |