MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Structured version   Visualization version   GIF version

Theorem nvge0 30692
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1 𝑋 = (BaseSet‘𝑈)
nvge0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvge0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))

Proof of Theorem nvge0
StepHypRef Expression
1 2rp 13039 . . 3 2 ∈ ℝ+
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 2 ∈ ℝ+)
3 nvge0.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvge0.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 30680 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
6 eqid 2737 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
76, 4nvz0 30687 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
87adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
9 1pneg1e0 12385 . . . . . . . . 9 (1 + -1) = 0
109oveq1i 7441 . . . . . . . 8 ((1 + -1)( ·𝑠OLD𝑈)𝐴) = (0( ·𝑠OLD𝑈)𝐴)
11 eqid 2737 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
123, 11, 6nv0 30656 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0( ·𝑠OLD𝑈)𝐴) = (0vec𝑈))
1310, 12eqtr2id 2790 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = ((1 + -1)( ·𝑠OLD𝑈)𝐴))
14 neg1cn 12380 . . . . . . . 8 -1 ∈ ℂ
15 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
16 eqid 2737 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 11nvdir 30650 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1815, 17mp3anr1 1460 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1914, 18mpanr1 703 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
203, 11nvsid 30646 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
2120oveq1d 7446 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2213, 19, 213eqtrd 2781 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2322fveq2d 6910 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
248, 23eqtr3d 2779 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
253, 11nvscl 30645 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
2614, 25mp3an2 1451 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
273, 16, 4nvtri 30689 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2826, 27mpd3an3 1464 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2924, 28eqbrtrd 5165 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
303, 11, 4nvm1 30684 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐴)) = (𝑁𝐴))
3130oveq2d 7447 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = ((𝑁𝐴) + (𝑁𝐴)))
325recnd 11289 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
33322timesd 12509 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (2 · (𝑁𝐴)) = ((𝑁𝐴) + (𝑁𝐴)))
3431, 33eqtr4d 2780 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = (2 · (𝑁𝐴)))
3529, 34breqtrd 5169 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (2 · (𝑁𝐴)))
362, 5, 35prodge0rd 13142 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  -cneg 11493  2c2 12321  +crp 13034  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607  normCVcnmcv 30609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619
This theorem is referenced by:  nvgt0  30693  smcnlem  30716  ipnm  30730  nmooge0  30786  nmoub3i  30792  siilem1  30870  siii  30872  ubthlem3  30891  minvecolem1  30893  minvecolem5  30900  minvecolem6  30901  htthlem  30936
  Copyright terms: Public domain W3C validator