MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Structured version   Visualization version   GIF version

Theorem nvge0 30609
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1 𝑋 = (BaseSet‘𝑈)
nvge0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvge0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))

Proof of Theorem nvge0
StepHypRef Expression
1 2rp 12963 . . 3 2 ∈ ℝ+
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 2 ∈ ℝ+)
3 nvge0.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvge0.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 30597 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
6 eqid 2730 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
76, 4nvz0 30604 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
87adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
9 1pneg1e0 12307 . . . . . . . . 9 (1 + -1) = 0
109oveq1i 7400 . . . . . . . 8 ((1 + -1)( ·𝑠OLD𝑈)𝐴) = (0( ·𝑠OLD𝑈)𝐴)
11 eqid 2730 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
123, 11, 6nv0 30573 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0( ·𝑠OLD𝑈)𝐴) = (0vec𝑈))
1310, 12eqtr2id 2778 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = ((1 + -1)( ·𝑠OLD𝑈)𝐴))
14 neg1cn 12178 . . . . . . . 8 -1 ∈ ℂ
15 ax-1cn 11133 . . . . . . . . 9 1 ∈ ℂ
16 eqid 2730 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 11nvdir 30567 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1815, 17mp3anr1 1460 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1914, 18mpanr1 703 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
203, 11nvsid 30563 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
2120oveq1d 7405 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2213, 19, 213eqtrd 2769 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2322fveq2d 6865 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
248, 23eqtr3d 2767 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
253, 11nvscl 30562 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
2614, 25mp3an2 1451 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
273, 16, 4nvtri 30606 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2826, 27mpd3an3 1464 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2924, 28eqbrtrd 5132 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
303, 11, 4nvm1 30601 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐴)) = (𝑁𝐴))
3130oveq2d 7406 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = ((𝑁𝐴) + (𝑁𝐴)))
325recnd 11209 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
33322timesd 12432 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (2 · (𝑁𝐴)) = ((𝑁𝐴) + (𝑁𝐴)))
3431, 33eqtr4d 2768 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = (2 · (𝑁𝐴)))
3529, 34breqtrd 5136 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (2 · (𝑁𝐴)))
362, 5, 35prodge0rd 13067 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  -cneg 11413  2c2 12248  +crp 12958  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524  normCVcnmcv 30526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536
This theorem is referenced by:  nvgt0  30610  smcnlem  30633  ipnm  30647  nmooge0  30703  nmoub3i  30709  siilem1  30787  siii  30789  ubthlem3  30808  minvecolem1  30810  minvecolem5  30817  minvecolem6  30818  htthlem  30853
  Copyright terms: Public domain W3C validator