MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Structured version   Visualization version   GIF version

Theorem nvge0 28217
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1 𝑋 = (BaseSet‘𝑈)
nvge0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvge0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))

Proof of Theorem nvge0
StepHypRef Expression
1 2rp 12202 . . 3 2 ∈ ℝ+
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 2 ∈ ℝ+)
3 nvge0.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvge0.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 28205 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
6 eqid 2772 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
76, 4nvz0 28212 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
87adantr 473 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
9 1pneg1e0 11559 . . . . . . . . 9 (1 + -1) = 0
109oveq1i 6980 . . . . . . . 8 ((1 + -1)( ·𝑠OLD𝑈)𝐴) = (0( ·𝑠OLD𝑈)𝐴)
11 eqid 2772 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
123, 11, 6nv0 28181 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0( ·𝑠OLD𝑈)𝐴) = (0vec𝑈))
1310, 12syl5req 2821 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = ((1 + -1)( ·𝑠OLD𝑈)𝐴))
14 neg1cn 11554 . . . . . . . 8 -1 ∈ ℂ
15 ax-1cn 10385 . . . . . . . . 9 1 ∈ ℂ
16 eqid 2772 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 11nvdir 28175 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1815, 17mp3anr1 1437 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1914, 18mpanr1 690 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
203, 11nvsid 28171 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
2120oveq1d 6985 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2213, 19, 213eqtrd 2812 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2322fveq2d 6497 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
248, 23eqtr3d 2810 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
253, 11nvscl 28170 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
2614, 25mp3an2 1428 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
273, 16, 4nvtri 28214 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2826, 27mpd3an3 1441 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2924, 28eqbrtrd 4945 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
303, 11, 4nvm1 28209 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐴)) = (𝑁𝐴))
3130oveq2d 6986 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = ((𝑁𝐴) + (𝑁𝐴)))
325recnd 10460 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
33322timesd 11683 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (2 · (𝑁𝐴)) = ((𝑁𝐴) + (𝑁𝐴)))
3431, 33eqtr4d 2811 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = (2 · (𝑁𝐴)))
3529, 34breqtrd 4949 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (2 · (𝑁𝐴)))
362, 5, 35prodge0rd 12306 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048   class class class wbr 4923  cfv 6182  (class class class)co 6970  cc 10325  0cc0 10327  1c1 10328   + caddc 10330   · cmul 10332  cle 10467  -cneg 10663  2c2 11488  +crp 12197  NrmCVeccnv 28128   +𝑣 cpv 28129  BaseSetcba 28130   ·𝑠OLD cns 28131  0veccn0v 28132  normCVcnmcv 28134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-grpo 28037  df-gid 28038  df-ginv 28039  df-ablo 28089  df-vc 28103  df-nv 28136  df-va 28139  df-ba 28140  df-sm 28141  df-0v 28142  df-nmcv 28144
This theorem is referenced by:  nvgt0  28218  smcnlem  28241  ipnm  28255  nmooge0  28311  nmoub3i  28317  siilem1  28395  siii  28397  ubthlem3  28417  minvecolem1  28419  minvecolem5  28426  minvecolem6  28427  htthlem  28463
  Copyright terms: Public domain W3C validator