![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvge0 | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvge0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvge0.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12202 | . . 3 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 2 ∈ ℝ+) |
3 | nvge0.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | nvge0.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 3, 4 | nvcl 28205 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
6 | eqid 2772 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | 6, 4 | nvz0 28212 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
8 | 7 | adantr 473 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
9 | 1pneg1e0 11559 | . . . . . . . . 9 ⊢ (1 + -1) = 0 | |
10 | 9 | oveq1i 6980 | . . . . . . . 8 ⊢ ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = (0( ·𝑠OLD ‘𝑈)𝐴) |
11 | eqid 2772 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 3, 11, 6 | nv0 28181 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0( ·𝑠OLD ‘𝑈)𝐴) = (0vec‘𝑈)) |
13 | 10, 12 | syl5req 2821 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴)) |
14 | neg1cn 11554 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
15 | ax-1cn 10385 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
16 | eqid 2772 | . . . . . . . . . 10 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
17 | 3, 16, 11 | nvdir 28175 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
18 | 15, 17 | mp3anr1 1437 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
19 | 14, 18 | mpanr1 690 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
20 | 3, 11 | nvsid 28171 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
21 | 20 | oveq1d 6985 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
22 | 13, 19, 21 | 3eqtrd 2812 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
23 | 22 | fveq2d 6497 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
24 | 8, 23 | eqtr3d 2810 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
25 | 3, 11 | nvscl 28170 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
26 | 14, 25 | mp3an2 1428 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
27 | 3, 16, 4 | nvtri 28214 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
28 | 26, 27 | mpd3an3 1441 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
29 | 24, 28 | eqbrtrd 4945 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
30 | 3, 11, 4 | nvm1 28209 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘𝐴)) |
31 | 30 | oveq2d 6986 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
32 | 5 | recnd 10460 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
33 | 32 | 2timesd 11683 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (2 · (𝑁‘𝐴)) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
34 | 31, 33 | eqtr4d 2811 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = (2 · (𝑁‘𝐴))) |
35 | 29, 34 | breqtrd 4949 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (2 · (𝑁‘𝐴))) |
36 | 2, 5, 35 | prodge0rd 12306 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 ℂcc 10325 0cc0 10327 1c1 10328 + caddc 10330 · cmul 10332 ≤ cle 10467 -cneg 10663 2c2 11488 ℝ+crp 12197 NrmCVeccnv 28128 +𝑣 cpv 28129 BaseSetcba 28130 ·𝑠OLD cns 28131 0veccn0v 28132 normCVcnmcv 28134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-grpo 28037 df-gid 28038 df-ginv 28039 df-ablo 28089 df-vc 28103 df-nv 28136 df-va 28139 df-ba 28140 df-sm 28141 df-0v 28142 df-nmcv 28144 |
This theorem is referenced by: nvgt0 28218 smcnlem 28241 ipnm 28255 nmooge0 28311 nmoub3i 28317 siilem1 28395 siii 28397 ubthlem3 28417 minvecolem1 28419 minvecolem5 28426 minvecolem6 28427 htthlem 28463 |
Copyright terms: Public domain | W3C validator |