MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvge0 Structured version   Visualization version   GIF version

Theorem nvge0 30653
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvge0.1 𝑋 = (BaseSet‘𝑈)
nvge0.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvge0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))

Proof of Theorem nvge0
StepHypRef Expression
1 2rp 12895 . . 3 2 ∈ ℝ+
21a1i 11 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 2 ∈ ℝ+)
3 nvge0.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvge0.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 30641 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
6 eqid 2731 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
76, 4nvz0 30648 . . . . . 6 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
87adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
9 1pneg1e0 12239 . . . . . . . . 9 (1 + -1) = 0
109oveq1i 7356 . . . . . . . 8 ((1 + -1)( ·𝑠OLD𝑈)𝐴) = (0( ·𝑠OLD𝑈)𝐴)
11 eqid 2731 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
123, 11, 6nv0 30617 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0( ·𝑠OLD𝑈)𝐴) = (0vec𝑈))
1310, 12eqtr2id 2779 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = ((1 + -1)( ·𝑠OLD𝑈)𝐴))
14 neg1cn 12110 . . . . . . . 8 -1 ∈ ℂ
15 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
16 eqid 2731 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 11nvdir 30611 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1815, 17mp3anr1 1460 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
1914, 18mpanr1 703 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -1)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
203, 11nvsid 30607 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
2120oveq1d 7361 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2213, 19, 213eqtrd 2770 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0vec𝑈) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))
2322fveq2d 6826 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
248, 23eqtr3d 2768 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))))
253, 11nvscl 30606 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
2614, 25mp3an2 1451 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋)
273, 16, 4nvtri 30650 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2826, 27mpd3an3 1464 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
2924, 28eqbrtrd 5111 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))))
303, 11, 4nvm1 30645 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐴)) = (𝑁𝐴))
3130oveq2d 7362 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = ((𝑁𝐴) + (𝑁𝐴)))
325recnd 11140 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
33322timesd 12364 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (2 · (𝑁𝐴)) = ((𝑁𝐴) + (𝑁𝐴)))
3431, 33eqtr4d 2769 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐴))) = (2 · (𝑁𝐴)))
3529, 34breqtrd 5115 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (2 · (𝑁𝐴)))
362, 5, 35prodge0rd 12999 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cle 11147  -cneg 11345  2c2 12180  +crp 12890  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  0veccn0v 30568  normCVcnmcv 30570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nvgt0  30654  smcnlem  30677  ipnm  30691  nmooge0  30747  nmoub3i  30753  siilem1  30831  siii  30833  ubthlem3  30852  minvecolem1  30854  minvecolem5  30861  minvecolem6  30862  htthlem  30897
  Copyright terms: Public domain W3C validator