| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvge0 | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvge0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvge0.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 12898 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 2 ∈ ℝ+) |
| 3 | nvge0.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | nvge0.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 3, 4 | nvcl 30605 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 7 | 6, 4 | nvz0 30612 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
| 9 | 1pneg1e0 12242 | . . . . . . . . 9 ⊢ (1 + -1) = 0 | |
| 10 | 9 | oveq1i 7359 | . . . . . . . 8 ⊢ ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = (0( ·𝑠OLD ‘𝑈)𝐴) |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 12 | 3, 11, 6 | nv0 30581 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0( ·𝑠OLD ‘𝑈)𝐴) = (0vec‘𝑈)) |
| 13 | 10, 12 | eqtr2id 2777 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴)) |
| 14 | neg1cn 12113 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
| 15 | ax-1cn 11067 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 16 | eqid 2729 | . . . . . . . . . 10 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 17 | 3, 16, 11 | nvdir 30575 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
| 18 | 15, 17 | mp3anr1 1460 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
| 19 | 14, 18 | mpanr1 703 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
| 20 | 3, 11 | nvsid 30571 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 21 | 20 | oveq1d 7364 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
| 22 | 13, 19, 21 | 3eqtrd 2768 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
| 23 | 22 | fveq2d 6826 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
| 24 | 8, 23 | eqtr3d 2766 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
| 25 | 3, 11 | nvscl 30570 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
| 26 | 14, 25 | mp3an2 1451 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
| 27 | 3, 16, 4 | nvtri 30614 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
| 28 | 26, 27 | mpd3an3 1464 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
| 29 | 24, 28 | eqbrtrd 5114 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
| 30 | 3, 11, 4 | nvm1 30609 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘𝐴)) |
| 31 | 30 | oveq2d 7365 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
| 32 | 5 | recnd 11143 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
| 33 | 32 | 2timesd 12367 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (2 · (𝑁‘𝐴)) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
| 34 | 31, 33 | eqtr4d 2767 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = (2 · (𝑁‘𝐴))) |
| 35 | 29, 34 | breqtrd 5118 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (2 · (𝑁‘𝐴))) |
| 36 | 2, 5, 35 | prodge0rd 13002 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ≤ cle 11150 -cneg 11348 2c2 12183 ℝ+crp 12893 NrmCVeccnv 30528 +𝑣 cpv 30529 BaseSetcba 30530 ·𝑠OLD cns 30531 0veccn0v 30532 normCVcnmcv 30534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30437 df-gid 30438 df-ginv 30439 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 |
| This theorem is referenced by: nvgt0 30618 smcnlem 30641 ipnm 30655 nmooge0 30711 nmoub3i 30717 siilem1 30795 siii 30797 ubthlem3 30816 minvecolem1 30818 minvecolem5 30825 minvecolem6 30826 htthlem 30861 |
| Copyright terms: Public domain | W3C validator |