Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvge0 | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvge0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvge0.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvge0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12436 | . . 3 ⊢ 2 ∈ ℝ+ | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 2 ∈ ℝ+) |
3 | nvge0.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | nvge0.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 3, 4 | nvcl 28544 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
6 | eqid 2759 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
7 | 6, 4 | nvz0 28551 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
8 | 7 | adantr 485 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
9 | 1pneg1e0 11794 | . . . . . . . . 9 ⊢ (1 + -1) = 0 | |
10 | 9 | oveq1i 7161 | . . . . . . . 8 ⊢ ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = (0( ·𝑠OLD ‘𝑈)𝐴) |
11 | eqid 2759 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 3, 11, 6 | nv0 28520 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0( ·𝑠OLD ‘𝑈)𝐴) = (0vec‘𝑈)) |
13 | 10, 12 | syl5req 2807 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴)) |
14 | neg1cn 11789 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
15 | ax-1cn 10634 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
16 | eqid 2759 | . . . . . . . . . 10 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
17 | 3, 16, 11 | nvdir 28514 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
18 | 15, 17 | mp3anr1 1456 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
19 | 14, 18 | mpanr1 703 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -1)( ·𝑠OLD ‘𝑈)𝐴) = ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
20 | 3, 11 | nvsid 28510 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
21 | 20 | oveq1d 7166 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1( ·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
22 | 13, 19, 21 | 3eqtrd 2798 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0vec‘𝑈) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) |
23 | 22 | fveq2d 6663 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
24 | 8, 23 | eqtr3d 2796 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
25 | 3, 11 | nvscl 28509 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
26 | 14, 25 | mp3an2 1447 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) |
27 | 3, 16, 4 | nvtri 28553 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐴) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
28 | 26, 27 | mpd3an3 1460 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐴))) ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
29 | 24, 28 | eqbrtrd 5055 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)))) |
30 | 3, 11, 4 | nvm1 28548 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘𝐴)) |
31 | 30 | oveq2d 7167 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
32 | 5 | recnd 10708 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
33 | 32 | 2timesd 11918 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (2 · (𝑁‘𝐴)) = ((𝑁‘𝐴) + (𝑁‘𝐴))) |
34 | 31, 33 | eqtr4d 2797 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘(-1( ·𝑠OLD ‘𝑈)𝐴))) = (2 · (𝑁‘𝐴))) |
35 | 29, 34 | breqtrd 5059 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (2 · (𝑁‘𝐴))) |
36 | 2, 5, 35 | prodge0rd 12538 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 0cc0 10576 1c1 10577 + caddc 10579 · cmul 10581 ≤ cle 10715 -cneg 10910 2c2 11730 ℝ+crp 12431 NrmCVeccnv 28467 +𝑣 cpv 28468 BaseSetcba 28469 ·𝑠OLD cns 28470 0veccn0v 28471 normCVcnmcv 28473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8940 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-n0 11936 df-z 12022 df-uz 12284 df-rp 12432 df-seq 13420 df-exp 13481 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-grpo 28376 df-gid 28377 df-ginv 28378 df-ablo 28428 df-vc 28442 df-nv 28475 df-va 28478 df-ba 28479 df-sm 28480 df-0v 28481 df-nmcv 28483 |
This theorem is referenced by: nvgt0 28557 smcnlem 28580 ipnm 28594 nmooge0 28650 nmoub3i 28656 siilem1 28734 siii 28736 ubthlem3 28755 minvecolem1 28757 minvecolem5 28764 minvecolem6 28765 htthlem 28800 |
Copyright terms: Public domain | W3C validator |