Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finorwe Structured version   Visualization version   GIF version

Theorem finorwe 37375
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.)
Assertion
Ref Expression
finorwe (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))

Proof of Theorem finorwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V)
2 soss 5551 . . . . . . . . . 10 (𝑥𝐴 → ( < Or 𝐴< Or 𝑥))
32com12 32 . . . . . . . . 9 ( < Or 𝐴 → (𝑥𝐴< Or 𝑥))
43adantl 481 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< Or 𝑥))
5 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
6 fineqv 9168 . . . . . . . . . . 11 (¬ ω ∈ V ↔ Fin = V)
76biimpi 216 . . . . . . . . . 10 (¬ ω ∈ V → Fin = V)
85, 7eleqtrrid 2835 . . . . . . . . 9 (¬ ω ∈ V → 𝑥 ∈ Fin)
9 wofi 9194 . . . . . . . . . 10 (( < Or 𝑥𝑥 ∈ Fin) → < We 𝑥)
109ancoms 458 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥)
118, 10sylan 580 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥)
121, 4, 11syl6an 684 . . . . . . 7 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< We 𝑥))
13 ssid 3960 . . . . . . . . 9 𝑥𝑥
14 wereu 5619 . . . . . . . . . . 11 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
15 reurex 3349 . . . . . . . . . . 11 (∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1614, 15syl 17 . . . . . . . . . 10 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
175, 16mp3anr1 1460 . . . . . . . . 9 (( < We 𝑥 ∧ (𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1813, 17mpanr1 703 . . . . . . . 8 (( < We 𝑥𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1918ex 412 . . . . . . 7 ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2012, 19syl6 35 . . . . . 6 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)))
2120impd 410 . . . . 5 ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2221alrimiv 1927 . . . 4 ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
23 df-fr 5576 . . . 4 ( < Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2422, 23sylibr 234 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴)
25 simpr 484 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴)
26 df-we 5578 . . 3 ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴))
2724, 25, 26sylanbrc 583 . 2 ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴)
2827ex 412 1 (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095   Or wor 5530   Fr wfr 5573   We wwe 5575  ωcom 7806  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator