Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finorwe | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.) |
Ref | Expression |
---|---|
finorwe | ⊢ (¬ ω ∈ V → ( < Or 𝐴 → < We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V) | |
2 | soss 5466 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ 𝐴 → ( < Or 𝐴 → < Or 𝑥)) | |
3 | 2 | com12 32 | . . . . . . . . 9 ⊢ ( < Or 𝐴 → (𝑥 ⊆ 𝐴 → < Or 𝑥)) |
4 | 3 | adantl 485 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → < Or 𝑥)) |
5 | vex 3413 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
6 | fineqv 8784 | . . . . . . . . . . 11 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
7 | 6 | biimpi 219 | . . . . . . . . . 10 ⊢ (¬ ω ∈ V → Fin = V) |
8 | 5, 7 | eleqtrrid 2859 | . . . . . . . . 9 ⊢ (¬ ω ∈ V → 𝑥 ∈ Fin) |
9 | wofi 8813 | . . . . . . . . . 10 ⊢ (( < Or 𝑥 ∧ 𝑥 ∈ Fin) → < We 𝑥) | |
10 | 9 | ancoms 462 | . . . . . . . . 9 ⊢ ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥) |
11 | 8, 10 | sylan 583 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥) |
12 | 1, 4, 11 | syl6an 683 | . . . . . . 7 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → < We 𝑥)) |
13 | ssid 3916 | . . . . . . . . 9 ⊢ 𝑥 ⊆ 𝑥 | |
14 | wereu 5524 | . . . . . . . . . . 11 ⊢ (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃!𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) | |
15 | reurex 3341 | . . . . . . . . . . 11 ⊢ (∃!𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) | |
16 | 14, 15 | syl 17 | . . . . . . . . . 10 ⊢ (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
17 | 5, 16 | mp3anr1 1455 | . . . . . . . . 9 ⊢ (( < We 𝑥 ∧ (𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
18 | 13, 17 | mpanr1 702 | . . . . . . . 8 ⊢ (( < We 𝑥 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
19 | 18 | ex 416 | . . . . . . 7 ⊢ ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
20 | 12, 19 | syl6 35 | . . . . . 6 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦))) |
21 | 20 | impd 414 | . . . . 5 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
22 | 21 | alrimiv 1928 | . . . 4 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
23 | df-fr 5487 | . . . 4 ⊢ ( < Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) | |
24 | 22, 23 | sylibr 237 | . . 3 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴) |
25 | simpr 488 | . . 3 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴) | |
26 | df-we 5489 | . . 3 ⊢ ( < We 𝐴 ↔ ( < Fr 𝐴 ∧ < Or 𝐴)) | |
27 | 24, 25, 26 | sylanbrc 586 | . 2 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴) |
28 | 27 | ex 416 | 1 ⊢ (¬ ω ∈ V → ( < Or 𝐴 → < We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 ∀wal 1536 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ∃!wreu 3072 Vcvv 3409 ⊆ wss 3860 ∅c0 4227 class class class wbr 5036 Or wor 5446 Fr wfr 5484 We wwe 5486 ωcom 7585 Fincfn 8540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |