Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finorwe Structured version   Visualization version   GIF version

Theorem finorwe 37348
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.)
Assertion
Ref Expression
finorwe (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))

Proof of Theorem finorwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V)
2 soss 5628 . . . . . . . . . 10 (𝑥𝐴 → ( < Or 𝐴< Or 𝑥))
32com12 32 . . . . . . . . 9 ( < Or 𝐴 → (𝑥𝐴< Or 𝑥))
43adantl 481 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< Or 𝑥))
5 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
6 fineqv 9326 . . . . . . . . . . 11 (¬ ω ∈ V ↔ Fin = V)
76biimpi 216 . . . . . . . . . 10 (¬ ω ∈ V → Fin = V)
85, 7eleqtrrid 2851 . . . . . . . . 9 (¬ ω ∈ V → 𝑥 ∈ Fin)
9 wofi 9353 . . . . . . . . . 10 (( < Or 𝑥𝑥 ∈ Fin) → < We 𝑥)
109ancoms 458 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥)
118, 10sylan 579 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥)
121, 4, 11syl6an 683 . . . . . . 7 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< We 𝑥))
13 ssid 4031 . . . . . . . . 9 𝑥𝑥
14 wereu 5696 . . . . . . . . . . 11 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
15 reurex 3392 . . . . . . . . . . 11 (∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1614, 15syl 17 . . . . . . . . . 10 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
175, 16mp3anr1 1458 . . . . . . . . 9 (( < We 𝑥 ∧ (𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1813, 17mpanr1 702 . . . . . . . 8 (( < We 𝑥𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1918ex 412 . . . . . . 7 ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2012, 19syl6 35 . . . . . 6 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)))
2120impd 410 . . . . 5 ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2221alrimiv 1926 . . . 4 ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
23 df-fr 5652 . . . 4 ( < Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2422, 23sylibr 234 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴)
25 simpr 484 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴)
26 df-we 5654 . . 3 ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴))
2724, 25, 26sylanbrc 582 . 2 ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴)
2827ex 412 1 (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166   Or wor 5606   Fr wfr 5649   We wwe 5651  ωcom 7903  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator