Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finorwe Structured version   Visualization version   GIF version

Theorem finorwe 37424
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.)
Assertion
Ref Expression
finorwe (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))

Proof of Theorem finorwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V)
2 soss 5542 . . . . . . . . . 10 (𝑥𝐴 → ( < Or 𝐴< Or 𝑥))
32com12 32 . . . . . . . . 9 ( < Or 𝐴 → (𝑥𝐴< Or 𝑥))
43adantl 481 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< Or 𝑥))
5 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
6 fineqv 9151 . . . . . . . . . . 11 (¬ ω ∈ V ↔ Fin = V)
76biimpi 216 . . . . . . . . . 10 (¬ ω ∈ V → Fin = V)
85, 7eleqtrrid 2838 . . . . . . . . 9 (¬ ω ∈ V → 𝑥 ∈ Fin)
9 wofi 9173 . . . . . . . . . 10 (( < Or 𝑥𝑥 ∈ Fin) → < We 𝑥)
109ancoms 458 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥)
118, 10sylan 580 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥)
121, 4, 11syl6an 684 . . . . . . 7 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< We 𝑥))
13 ssid 3952 . . . . . . . . 9 𝑥𝑥
14 wereu 5610 . . . . . . . . . . 11 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
15 reurex 3350 . . . . . . . . . . 11 (∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1614, 15syl 17 . . . . . . . . . 10 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
175, 16mp3anr1 1460 . . . . . . . . 9 (( < We 𝑥 ∧ (𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1813, 17mpanr1 703 . . . . . . . 8 (( < We 𝑥𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1918ex 412 . . . . . . 7 ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2012, 19syl6 35 . . . . . 6 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)))
2120impd 410 . . . . 5 ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2221alrimiv 1928 . . . 4 ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
23 df-fr 5567 . . . 4 ( < Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2422, 23sylibr 234 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴)
25 simpr 484 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴)
26 df-we 5569 . . 3 ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴))
2724, 25, 26sylanbrc 583 . 2 ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴)
2827ex 412 1 (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089   Or wor 5521   Fr wfr 5564   We wwe 5566  ωcom 7796  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator