| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finorwe | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.) |
| Ref | Expression |
|---|---|
| finorwe | ⊢ (¬ ω ∈ V → ( < Or 𝐴 → < We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V) | |
| 2 | soss 5569 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ 𝐴 → ( < Or 𝐴 → < Or 𝑥)) | |
| 3 | 2 | com12 32 | . . . . . . . . 9 ⊢ ( < Or 𝐴 → (𝑥 ⊆ 𝐴 → < Or 𝑥)) |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → < Or 𝑥)) |
| 5 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 6 | fineqv 9217 | . . . . . . . . . . 11 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
| 7 | 6 | biimpi 216 | . . . . . . . . . 10 ⊢ (¬ ω ∈ V → Fin = V) |
| 8 | 5, 7 | eleqtrrid 2836 | . . . . . . . . 9 ⊢ (¬ ω ∈ V → 𝑥 ∈ Fin) |
| 9 | wofi 9243 | . . . . . . . . . 10 ⊢ (( < Or 𝑥 ∧ 𝑥 ∈ Fin) → < We 𝑥) | |
| 10 | 9 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥) |
| 11 | 8, 10 | sylan 580 | . . . . . . . 8 ⊢ ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥) |
| 12 | 1, 4, 11 | syl6an 684 | . . . . . . 7 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → < We 𝑥)) |
| 13 | ssid 3972 | . . . . . . . . 9 ⊢ 𝑥 ⊆ 𝑥 | |
| 14 | wereu 5637 | . . . . . . . . . . 11 ⊢ (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃!𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) | |
| 15 | reurex 3360 | . . . . . . . . . . 11 ⊢ (∃!𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) | |
| 16 | 14, 15 | syl 17 | . . . . . . . . . 10 ⊢ (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
| 17 | 5, 16 | mp3anr1 1460 | . . . . . . . . 9 ⊢ (( < We 𝑥 ∧ (𝑥 ⊆ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
| 18 | 13, 17 | mpanr1 703 | . . . . . . . 8 ⊢ (( < We 𝑥 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
| 20 | 12, 19 | syl6 35 | . . . . . 6 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥 ⊆ 𝐴 → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦))) |
| 21 | 20 | impd 410 | . . . . 5 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
| 22 | 21 | alrimiv 1927 | . . . 4 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) |
| 23 | df-fr 5594 | . . . 4 ⊢ ( < Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧 < 𝑦)) | |
| 24 | 22, 23 | sylibr 234 | . . 3 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴) |
| 25 | simpr 484 | . . 3 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴) | |
| 26 | df-we 5596 | . . 3 ⊢ ( < We 𝐴 ↔ ( < Fr 𝐴 ∧ < Or 𝐴)) | |
| 27 | 24, 25, 26 | sylanbrc 583 | . 2 ⊢ ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴) |
| 28 | 27 | ex 412 | 1 ⊢ (¬ ω ∈ V → ( < Or 𝐴 → < We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∃!wreu 3354 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 Or wor 5548 Fr wfr 5591 We wwe 5593 ωcom 7845 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |