Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finorwe Structured version   Visualization version   GIF version

Theorem finorwe 36566
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.)
Assertion
Ref Expression
finorwe (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))

Proof of Theorem finorwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V)
2 soss 5607 . . . . . . . . . 10 (𝑥𝐴 → ( < Or 𝐴< Or 𝑥))
32com12 32 . . . . . . . . 9 ( < Or 𝐴 → (𝑥𝐴< Or 𝑥))
43adantl 480 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< Or 𝑥))
5 vex 3476 . . . . . . . . . 10 𝑥 ∈ V
6 fineqv 9265 . . . . . . . . . . 11 (¬ ω ∈ V ↔ Fin = V)
76biimpi 215 . . . . . . . . . 10 (¬ ω ∈ V → Fin = V)
85, 7eleqtrrid 2838 . . . . . . . . 9 (¬ ω ∈ V → 𝑥 ∈ Fin)
9 wofi 9294 . . . . . . . . . 10 (( < Or 𝑥𝑥 ∈ Fin) → < We 𝑥)
109ancoms 457 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥)
118, 10sylan 578 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥)
121, 4, 11syl6an 680 . . . . . . 7 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< We 𝑥))
13 ssid 4003 . . . . . . . . 9 𝑥𝑥
14 wereu 5671 . . . . . . . . . . 11 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
15 reurex 3378 . . . . . . . . . . 11 (∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1614, 15syl 17 . . . . . . . . . 10 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
175, 16mp3anr1 1456 . . . . . . . . 9 (( < We 𝑥 ∧ (𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1813, 17mpanr1 699 . . . . . . . 8 (( < We 𝑥𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1918ex 411 . . . . . . 7 ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2012, 19syl6 35 . . . . . 6 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)))
2120impd 409 . . . . 5 ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2221alrimiv 1928 . . . 4 ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
23 df-fr 5630 . . . 4 ( < Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2422, 23sylibr 233 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴)
25 simpr 483 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴)
26 df-we 5632 . . 3 ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴))
2724, 25, 26sylanbrc 581 . 2 ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴)
2827ex 411 1 (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1085  wal 1537   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  ∃!wreu 3372  Vcvv 3472  wss 3947  c0 4321   class class class wbr 5147   Or wor 5586   Fr wfr 5627   We wwe 5629  ωcom 7857  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator