Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finorwe Structured version   Visualization version   GIF version

Theorem finorwe 36201
Description: If the Axiom of Infinity is denied, every total order is a well-order. The notion of a well-order cannot be usefully expressed without the Axiom of Infinity due to the inability to quantify over proper classes. (Contributed by ML, 5-Oct-2023.)
Assertion
Ref Expression
finorwe (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))

Proof of Theorem finorwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 484 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → ¬ ω ∈ V)
2 soss 5607 . . . . . . . . . 10 (𝑥𝐴 → ( < Or 𝐴< Or 𝑥))
32com12 32 . . . . . . . . 9 ( < Or 𝐴 → (𝑥𝐴< Or 𝑥))
43adantl 483 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< Or 𝑥))
5 vex 3479 . . . . . . . . . 10 𝑥 ∈ V
6 fineqv 9259 . . . . . . . . . . 11 (¬ ω ∈ V ↔ Fin = V)
76biimpi 215 . . . . . . . . . 10 (¬ ω ∈ V → Fin = V)
85, 7eleqtrrid 2841 . . . . . . . . 9 (¬ ω ∈ V → 𝑥 ∈ Fin)
9 wofi 9288 . . . . . . . . . 10 (( < Or 𝑥𝑥 ∈ Fin) → < We 𝑥)
109ancoms 460 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ < Or 𝑥) → < We 𝑥)
118, 10sylan 581 . . . . . . . 8 ((¬ ω ∈ V ∧ < Or 𝑥) → < We 𝑥)
121, 4, 11syl6an 683 . . . . . . 7 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴< We 𝑥))
13 ssid 4003 . . . . . . . . 9 𝑥𝑥
14 wereu 5671 . . . . . . . . . . 11 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
15 reurex 3381 . . . . . . . . . . 11 (∃!𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1614, 15syl 17 . . . . . . . . . 10 (( < We 𝑥 ∧ (𝑥 ∈ V ∧ 𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
175, 16mp3anr1 1459 . . . . . . . . 9 (( < We 𝑥 ∧ (𝑥𝑥𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1813, 17mpanr1 702 . . . . . . . 8 (( < We 𝑥𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)
1918ex 414 . . . . . . 7 ( < We 𝑥 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2012, 19syl6 35 . . . . . 6 ((¬ ω ∈ V ∧ < Or 𝐴) → (𝑥𝐴 → (𝑥 ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦)))
2120impd 412 . . . . 5 ((¬ ω ∈ V ∧ < Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2221alrimiv 1931 . . . 4 ((¬ ω ∈ V ∧ < Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
23 df-fr 5630 . . . 4 ( < Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧 < 𝑦))
2422, 23sylibr 233 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Fr 𝐴)
25 simpr 486 . . 3 ((¬ ω ∈ V ∧ < Or 𝐴) → < Or 𝐴)
26 df-we 5632 . . 3 ( < We 𝐴 ↔ ( < Fr 𝐴< Or 𝐴))
2724, 25, 26sylanbrc 584 . 2 ((¬ ω ∈ V ∧ < Or 𝐴) → < We 𝐴)
2827ex 414 1 (¬ ω ∈ V → ( < Or 𝐴< We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  ∃!wreu 3375  Vcvv 3475  wss 3947  c0 4321   class class class wbr 5147   Or wor 5586   Fr wfr 5627   We wwe 5629  ωcom 7850  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7851  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator