![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vc0 | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vc0 | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vc0rid 27768 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
5 | 1p0e1 11335 | . . . . 5 ⊢ (1 + 0) = 1 | |
6 | 5 | oveq1i 6803 | . . . 4 ⊢ ((1 + 0)𝑆𝐴) = (1𝑆𝐴) |
7 | 0cn 10234 | . . . . 5 ⊢ 0 ∈ ℂ | |
8 | ax-1cn 10196 | . . . . . 6 ⊢ 1 ∈ ℂ | |
9 | vc0.2 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘𝑊) | |
10 | 1, 9, 2 | vcdir 27761 | . . . . . 6 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
11 | 8, 10 | mp3anr1 1569 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
12 | 7, 11 | mpanr1 683 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
13 | 1, 9, 2 | vcidOLD 27759 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
14 | 6, 12, 13 | 3eqtr3a 2829 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴) |
15 | 13 | oveq1d 6808 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴))) |
16 | 4, 14, 15 | 3eqtr2rd 2812 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍)) |
17 | 1, 9, 2 | vccl 27758 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
18 | 7, 17 | mp3an2 1560 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
19 | 1, 2, 3 | vczcl 27767 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
20 | 19 | adantr 466 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
21 | simpr 471 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
22 | 18, 20, 21 | 3jca 1122 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
23 | 1, 2 | vclcan 27766 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
24 | 22, 23 | syldan 579 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
25 | 16, 24 | mpbid 222 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ran crn 5250 ‘cfv 6031 (class class class)co 6793 1st c1st 7313 2nd c2nd 7314 ℂcc 10136 0cc0 10138 1c1 10139 + caddc 10141 GIdcgi 27684 CVecOLDcvc 27753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-1st 7315 df-2nd 7316 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-grpo 27687 df-gid 27688 df-ginv 27689 df-ablo 27739 df-vc 27754 |
This theorem is referenced by: vcz 27770 vcm 27771 nv0 27832 |
Copyright terms: Public domain | W3C validator |