| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vc0 | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
| vc0.3 | ⊢ 𝑋 = ran 𝐺 |
| vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| vc0 | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | vc0.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 3 | vc0.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 1, 2, 3 | vc0rid 30554 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
| 5 | 1p0e1 12364 | . . . . 5 ⊢ (1 + 0) = 1 | |
| 6 | 5 | oveq1i 7415 | . . . 4 ⊢ ((1 + 0)𝑆𝐴) = (1𝑆𝐴) |
| 7 | 0cn 11227 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 8 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 9 | vc0.2 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘𝑊) | |
| 10 | 1, 9, 2 | vcdir 30547 | . . . . . 6 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 11 | 8, 10 | mp3anr1 1460 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 12 | 7, 11 | mpanr1 703 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 13 | 1, 9, 2 | vcidOLD 30545 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 14 | 6, 12, 13 | 3eqtr3a 2794 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴) |
| 15 | 13 | oveq1d 7420 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴))) |
| 16 | 4, 14, 15 | 3eqtr2rd 2777 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍)) |
| 17 | 1, 9, 2 | vccl 30544 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
| 18 | 7, 17 | mp3an2 1451 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
| 19 | 1, 2, 3 | vczcl 30553 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
| 21 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 22 | 18, 20, 21 | 3jca 1128 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 23 | 1, 2 | vclcan 30552 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
| 24 | 22, 23 | syldan 591 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
| 25 | 16, 24 | mpbid 232 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 GIdcgi 30471 CVecOLDcvc 30539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-grpo 30474 df-gid 30475 df-ginv 30476 df-ablo 30526 df-vc 30540 |
| This theorem is referenced by: vcz 30556 vcm 30557 nv0 30618 |
| Copyright terms: Public domain | W3C validator |