MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Structured version   Visualization version   GIF version

Theorem vc0 27973
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vc0 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4 𝐺 = (1st𝑊)
2 vc0.3 . . . 4 𝑋 = ran 𝐺
3 vc0.4 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3vc0rid 27972 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
5 1p0e1 11482 . . . . 5 (1 + 0) = 1
65oveq1i 6915 . . . 4 ((1 + 0)𝑆𝐴) = (1𝑆𝐴)
7 0cn 10348 . . . . 5 0 ∈ ℂ
8 ax-1cn 10310 . . . . . 6 1 ∈ ℂ
9 vc0.2 . . . . . . 7 𝑆 = (2nd𝑊)
101, 9, 2vcdir 27965 . . . . . 6 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
118, 10mp3anr1 1586 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
127, 11mpanr1 694 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
131, 9, 2vcidOLD 27963 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
146, 12, 133eqtr3a 2885 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴)
1513oveq1d 6920 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴)))
164, 14, 153eqtr2rd 2868 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍))
171, 9, 2vccl 27962 . . . . 5 ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
187, 17mp3an2 1577 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
191, 2, 3vczcl 27971 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
2019adantr 474 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝑍𝑋)
21 simpr 479 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
2218, 20, 213jca 1162 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋))
231, 2vclcan 27970 . . 3 ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2422, 23syldan 585 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2516, 24mpbid 224 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  ran crn 5343  cfv 6123  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427  cc 10250  0cc0 10252  1c1 10253   + caddc 10255  GIdcgi 27889  CVecOLDcvc 27957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-1st 7428  df-2nd 7429  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-ltxr 10396  df-grpo 27892  df-gid 27893  df-ginv 27894  df-ablo 27944  df-vc 27958
This theorem is referenced by:  vcz  27974  vcm  27975  nv0  28036
  Copyright terms: Public domain W3C validator