MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Structured version   Visualization version   GIF version

Theorem vc0 30556
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vc0 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4 𝐺 = (1st𝑊)
2 vc0.3 . . . 4 𝑋 = ran 𝐺
3 vc0.4 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3vc0rid 30555 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
5 1p0e1 12251 . . . . 5 (1 + 0) = 1
65oveq1i 7362 . . . 4 ((1 + 0)𝑆𝐴) = (1𝑆𝐴)
7 0cn 11111 . . . . 5 0 ∈ ℂ
8 ax-1cn 11071 . . . . . 6 1 ∈ ℂ
9 vc0.2 . . . . . . 7 𝑆 = (2nd𝑊)
101, 9, 2vcdir 30548 . . . . . 6 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
118, 10mp3anr1 1460 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
127, 11mpanr1 703 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
131, 9, 2vcidOLD 30546 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
146, 12, 133eqtr3a 2792 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴)
1513oveq1d 7367 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴)))
164, 14, 153eqtr2rd 2775 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍))
171, 9, 2vccl 30545 . . . . 5 ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
187, 17mp3an2 1451 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
191, 2, 3vczcl 30554 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
2019adantr 480 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝑍𝑋)
21 simpr 484 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
2218, 20, 213jca 1128 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋))
231, 2vclcan 30553 . . 3 ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2422, 23syldan 591 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2516, 24mpbid 232 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5620  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  cc 11011  0cc0 11013  1c1 11014   + caddc 11016  GIdcgi 30472  CVecOLDcvc 30540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-grpo 30475  df-gid 30476  df-ginv 30477  df-ablo 30527  df-vc 30541
This theorem is referenced by:  vcz  30557  vcm  30558  nv0  30619
  Copyright terms: Public domain W3C validator