MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Structured version   Visualization version   GIF version

Theorem vc0 30593
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vc0 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4 𝐺 = (1st𝑊)
2 vc0.3 . . . 4 𝑋 = ran 𝐺
3 vc0.4 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3vc0rid 30592 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
5 1p0e1 12390 . . . . 5 (1 + 0) = 1
65oveq1i 7441 . . . 4 ((1 + 0)𝑆𝐴) = (1𝑆𝐴)
7 0cn 11253 . . . . 5 0 ∈ ℂ
8 ax-1cn 11213 . . . . . 6 1 ∈ ℂ
9 vc0.2 . . . . . . 7 𝑆 = (2nd𝑊)
101, 9, 2vcdir 30585 . . . . . 6 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
118, 10mp3anr1 1460 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
127, 11mpanr1 703 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
131, 9, 2vcidOLD 30583 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
146, 12, 133eqtr3a 2801 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴)
1513oveq1d 7446 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴)))
164, 14, 153eqtr2rd 2784 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍))
171, 9, 2vccl 30582 . . . . 5 ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
187, 17mp3an2 1451 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
191, 2, 3vczcl 30591 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
2019adantr 480 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝑍𝑋)
21 simpr 484 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
2218, 20, 213jca 1129 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋))
231, 2vclcan 30590 . . 3 ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2422, 23syldan 591 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2516, 24mpbid 232 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  ran crn 5686  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  GIdcgi 30509  CVecOLDcvc 30577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578
This theorem is referenced by:  vcz  30594  vcm  30595  nv0  30656
  Copyright terms: Public domain W3C validator