| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vc0 | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
| vc0.3 | ⊢ 𝑋 = ran 𝐺 |
| vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| vc0 | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | vc0.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 3 | vc0.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 1, 2, 3 | vc0rid 30535 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
| 5 | 1p0e1 12265 | . . . . 5 ⊢ (1 + 0) = 1 | |
| 6 | 5 | oveq1i 7363 | . . . 4 ⊢ ((1 + 0)𝑆𝐴) = (1𝑆𝐴) |
| 7 | 0cn 11126 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 8 | ax-1cn 11086 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 9 | vc0.2 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘𝑊) | |
| 10 | 1, 9, 2 | vcdir 30528 | . . . . . 6 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 11 | 8, 10 | mp3anr1 1460 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 12 | 7, 11 | mpanr1 703 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
| 13 | 1, 9, 2 | vcidOLD 30526 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 14 | 6, 12, 13 | 3eqtr3a 2788 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴) |
| 15 | 13 | oveq1d 7368 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴))) |
| 16 | 4, 14, 15 | 3eqtr2rd 2771 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍)) |
| 17 | 1, 9, 2 | vccl 30525 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
| 18 | 7, 17 | mp3an2 1451 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
| 19 | 1, 2, 3 | vczcl 30534 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
| 21 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 22 | 18, 20, 21 | 3jca 1128 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 23 | 1, 2 | vclcan 30533 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
| 24 | 22, 23 | syldan 591 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
| 25 | 16, 24 | mpbid 232 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5624 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 GIdcgi 30452 CVecOLDcvc 30520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-grpo 30455 df-gid 30456 df-ginv 30457 df-ablo 30507 df-vc 30521 |
| This theorem is referenced by: vcz 30537 vcm 30538 nv0 30599 |
| Copyright terms: Public domain | W3C validator |