MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Structured version   Visualization version   GIF version

Theorem vc0 28353
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vc0 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4 𝐺 = (1st𝑊)
2 vc0.3 . . . 4 𝑋 = ran 𝐺
3 vc0.4 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3vc0rid 28352 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
5 1p0e1 11764 . . . . 5 (1 + 0) = 1
65oveq1i 7168 . . . 4 ((1 + 0)𝑆𝐴) = (1𝑆𝐴)
7 0cn 10635 . . . . 5 0 ∈ ℂ
8 ax-1cn 10597 . . . . . 6 1 ∈ ℂ
9 vc0.2 . . . . . . 7 𝑆 = (2nd𝑊)
101, 9, 2vcdir 28345 . . . . . 6 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
118, 10mp3anr1 1454 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
127, 11mpanr1 701 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴)))
131, 9, 2vcidOLD 28343 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
146, 12, 133eqtr3a 2882 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴)
1513oveq1d 7173 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴)))
164, 14, 153eqtr2rd 2865 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍))
171, 9, 2vccl 28342 . . . . 5 ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
187, 17mp3an2 1445 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) ∈ 𝑋)
191, 2, 3vczcl 28351 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
2019adantr 483 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝑍𝑋)
21 simpr 487 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
2218, 20, 213jca 1124 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋))
231, 2vclcan 28350 . . 3 ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋𝑍𝑋𝐴𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2422, 23syldan 593 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍))
2516, 24mpbid 234 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  GIdcgi 28269  CVecOLDcvc 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338
This theorem is referenced by:  vcz  28354  vcm  28355  nv0  28416
  Copyright terms: Public domain W3C validator