![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vc0 | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vc0 | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vc0rid 29804 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
5 | 1p0e1 12332 | . . . . 5 ⊢ (1 + 0) = 1 | |
6 | 5 | oveq1i 7414 | . . . 4 ⊢ ((1 + 0)𝑆𝐴) = (1𝑆𝐴) |
7 | 0cn 11202 | . . . . 5 ⊢ 0 ∈ ℂ | |
8 | ax-1cn 11164 | . . . . . 6 ⊢ 1 ∈ ℂ | |
9 | vc0.2 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘𝑊) | |
10 | 1, 9, 2 | vcdir 29797 | . . . . . 6 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
11 | 8, 10 | mp3anr1 1459 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
12 | 7, 11 | mpanr1 702 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
13 | 1, 9, 2 | vcidOLD 29795 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
14 | 6, 12, 13 | 3eqtr3a 2797 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴) |
15 | 13 | oveq1d 7419 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴))) |
16 | 4, 14, 15 | 3eqtr2rd 2780 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍)) |
17 | 1, 9, 2 | vccl 29794 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
18 | 7, 17 | mp3an2 1450 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
19 | 1, 2, 3 | vczcl 29803 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
20 | 19 | adantr 482 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
21 | simpr 486 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
22 | 18, 20, 21 | 3jca 1129 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
23 | 1, 2 | vclcan 29802 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
24 | 22, 23 | syldan 592 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
25 | 16, 24 | mpbid 231 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ran crn 5676 ‘cfv 6540 (class class class)co 7404 1st c1st 7968 2nd c2nd 7969 ℂcc 11104 0cc0 11106 1c1 11107 + caddc 11109 GIdcgi 29721 CVecOLDcvc 29789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-1st 7970 df-2nd 7971 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-grpo 29724 df-gid 29725 df-ginv 29726 df-ablo 29776 df-vc 29790 |
This theorem is referenced by: vcz 29806 vcm 29807 nv0 29868 |
Copyright terms: Public domain | W3C validator |