![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vc0 | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vc0 | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vc0rid 30605 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
5 | 1p0e1 12417 | . . . . 5 ⊢ (1 + 0) = 1 | |
6 | 5 | oveq1i 7458 | . . . 4 ⊢ ((1 + 0)𝑆𝐴) = (1𝑆𝐴) |
7 | 0cn 11282 | . . . . 5 ⊢ 0 ∈ ℂ | |
8 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
9 | vc0.2 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘𝑊) | |
10 | 1, 9, 2 | vcdir 30598 | . . . . . 6 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
11 | 8, 10 | mp3anr1 1458 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (0 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
12 | 7, 11 | mpanr1 702 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 0)𝑆𝐴) = ((1𝑆𝐴)𝐺(0𝑆𝐴))) |
13 | 1, 9, 2 | vcidOLD 30596 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
14 | 6, 12, 13 | 3eqtr3a 2804 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = 𝐴) |
15 | 13 | oveq1d 7463 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(0𝑆𝐴)) = (𝐴𝐺(0𝑆𝐴))) |
16 | 4, 14, 15 | 3eqtr2rd 2787 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍)) |
17 | 1, 9, 2 | vccl 30595 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
18 | 7, 17 | mp3an2 1449 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) ∈ 𝑋) |
19 | 1, 2, 3 | vczcl 30604 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
21 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
22 | 18, 20, 21 | 3jca 1128 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
23 | 1, 2 | vclcan 30603 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ ((0𝑆𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
24 | 22, 23 | syldan 590 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺(0𝑆𝐴)) = (𝐴𝐺𝑍) ↔ (0𝑆𝐴) = 𝑍)) |
25 | 16, 24 | mpbid 232 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ran crn 5701 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 GIdcgi 30522 CVecOLDcvc 30590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 |
This theorem is referenced by: vcz 30607 vcm 30608 nv0 30669 |
Copyright terms: Public domain | W3C validator |