MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Structured version   Visualization version   GIF version

Theorem nvaddsub4 30636
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 12147 . . . . . 6 -1 ∈ ℂ
2 nvpncan2.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
4 eqid 2729 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 30609 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
61, 5mp3anr1 1460 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
763adant2 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
87oveq2d 7385 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))))
92, 4nvscl 30605 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
101, 9mp3an2 1451 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
112, 4nvscl 30605 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
121, 11mp3an2 1451 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
1310, 12anim12dan 619 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
14133adant2 1131 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
152, 3nvadd4 30604 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
1614, 15syld3an3 1411 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
178, 16eqtrd 2764 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
18 simp1 1136 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → 𝑈 ∈ NrmCVec)
192, 3nvgcl 30599 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
20193expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
21203adant3 1132 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
222, 3nvgcl 30599 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
23223expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
24233adant2 1131 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
25 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
262, 3, 4, 25nvmval 30621 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
2718, 21, 24, 26syl3anc 1373 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
282, 3, 4, 25nvmval 30621 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
29283adant3r 1182 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
30293adant2r 1180 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
312, 3, 4, 25nvmval 30621 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
32313adant3l 1181 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
33323adant2l 1179 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
3430, 33oveq12d 7387 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
3517, 27, 343eqtr4d 2774 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045  -cneg 11382  NrmCVeccnv 30563   +𝑣 cpv 30564  BaseSetcba 30565   ·𝑠OLD cns 30566  𝑣 cnsb 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579
This theorem is referenced by:  vacn  30673  minvecolem2  30854
  Copyright terms: Public domain W3C validator