Proof of Theorem nvaddsub4
Step | Hyp | Ref
| Expression |
1 | | neg1cn 12133 |
. . . . . 6
⊢ -1 ∈
ℂ |
2 | | nvpncan2.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
3 | | nvpncan2.2 |
. . . . . . 7
⊢ 𝐺 = ( +𝑣
‘𝑈) |
4 | | eqid 2736 |
. . . . . . 7
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
5 | 2, 3, 4 | nvdi 29037 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈
ℂ ∧ 𝐶 ∈
𝑋 ∧ 𝐷 ∈ 𝑋)) → (-1(
·𝑠OLD ‘𝑈)(𝐶𝐺𝐷)) = ((-1(
·𝑠OLD ‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
6 | 1, 5 | mp3anr1 1458 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (-1(
·𝑠OLD ‘𝑈)(𝐶𝐺𝐷)) = ((-1(
·𝑠OLD ‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
7 | 6 | 3adant2 1131 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (-1(
·𝑠OLD ‘𝑈)(𝐶𝐺𝐷)) = ((-1(
·𝑠OLD ‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
8 | 7 | oveq2d 7323 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD
‘𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD
‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷)))) |
9 | 2, 4 | nvscl 29033 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝐶 ∈
𝑋) → (-1(
·𝑠OLD ‘𝑈)𝐶) ∈ 𝑋) |
10 | 1, 9 | mp3an2 1449 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋) → (-1(
·𝑠OLD ‘𝑈)𝐶) ∈ 𝑋) |
11 | 2, 4 | nvscl 29033 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝐷 ∈
𝑋) → (-1(
·𝑠OLD ‘𝑈)𝐷) ∈ 𝑋) |
12 | 1, 11 | mp3an2 1449 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐷 ∈ 𝑋) → (-1(
·𝑠OLD ‘𝑈)𝐷) ∈ 𝑋) |
13 | 10, 12 | anim12dan 620 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((-1(
·𝑠OLD ‘𝑈)𝐶) ∈ 𝑋 ∧ (-1(
·𝑠OLD ‘𝑈)𝐷) ∈ 𝑋)) |
14 | 13 | 3adant2 1131 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((-1(
·𝑠OLD ‘𝑈)𝐶) ∈ 𝑋 ∧ (-1(
·𝑠OLD ‘𝑈)𝐷) ∈ 𝑋)) |
15 | 2, 3 | nvadd4 29032 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((-1(
·𝑠OLD ‘𝑈)𝐶) ∈ 𝑋 ∧ (-1(
·𝑠OLD ‘𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD
‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷)))) |
16 | 14, 15 | syld3an3 1409 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD
‘𝑈)𝐶)𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷)))) |
17 | 8, 16 | eqtrd 2776 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD
‘𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷)))) |
18 | | simp1 1136 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) |
19 | 2, 3 | nvgcl 29027 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
20 | 19 | 3expb 1120 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋) |
21 | 20 | 3adant3 1132 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋) |
22 | 2, 3 | nvgcl 29027 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
23 | 22 | 3expb 1120 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋) |
24 | 23 | 3adant2 1131 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋) |
25 | | nvpncan2.3 |
. . . 4
⊢ 𝑀 = ( −𝑣
‘𝑈) |
26 | 2, 3, 4, 25 | nvmval 29049 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD
‘𝑈)(𝐶𝐺𝐷)))) |
27 | 18, 21, 24, 26 | syl3anc 1371 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD
‘𝑈)(𝐶𝐺𝐷)))) |
28 | 2, 3, 4, 25 | nvmval 29049 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))) |
29 | 28 | 3adant3r 1181 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))) |
30 | 29 | 3adant2r 1179 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))) |
31 | 2, 3, 4, 25 | nvmval 29049 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
32 | 31 | 3adant3l 1180 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
33 | 32 | 3adant2l 1178 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷))) |
34 | 30, 33 | oveq12d 7325 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD
‘𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD
‘𝑈)𝐷)))) |
35 | 17, 27, 34 | 3eqtr4d 2786 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷))) |