MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Structured version   Visualization version   GIF version

Theorem nvaddsub4 28361
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
2 nvpncan2.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
4 eqid 2818 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 28334 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
61, 5mp3anr1 1449 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
763adant2 1123 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
87oveq2d 7161 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))))
92, 4nvscl 28330 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
101, 9mp3an2 1440 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
112, 4nvscl 28330 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
121, 11mp3an2 1440 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
1310, 12anim12dan 618 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
14133adant2 1123 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
152, 3nvadd4 28329 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
1614, 15syld3an3 1401 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
178, 16eqtrd 2853 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
18 simp1 1128 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → 𝑈 ∈ NrmCVec)
192, 3nvgcl 28324 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
20193expb 1112 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
21203adant3 1124 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
222, 3nvgcl 28324 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
23223expb 1112 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
24233adant2 1123 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
25 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
262, 3, 4, 25nvmval 28346 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
2718, 21, 24, 26syl3anc 1363 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
282, 3, 4, 25nvmval 28346 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
29283adant3r 1173 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
30293adant2r 1171 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
312, 3, 4, 25nvmval 28346 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
32313adant3l 1172 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
33323adant2l 1170 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
3430, 33oveq12d 7163 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
3517, 27, 343eqtr4d 2863 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  1c1 10526  -cneg 10859  NrmCVeccnv 28288   +𝑣 cpv 28289  BaseSetcba 28290   ·𝑠OLD cns 28291  𝑣 cnsb 28293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304
This theorem is referenced by:  vacn  28398  minvecolem2  28579
  Copyright terms: Public domain W3C validator