MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Structured version   Visualization version   GIF version

Theorem nvaddsub4 28584
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 11823 . . . . . 6 -1 ∈ ℂ
2 nvpncan2.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
4 eqid 2738 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 28557 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
61, 5mp3anr1 1459 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
763adant2 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
87oveq2d 7180 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))))
92, 4nvscl 28553 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
101, 9mp3an2 1450 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
112, 4nvscl 28553 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
121, 11mp3an2 1450 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
1310, 12anim12dan 622 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
14133adant2 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
152, 3nvadd4 28552 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
1614, 15syld3an3 1410 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
178, 16eqtrd 2773 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
18 simp1 1137 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → 𝑈 ∈ NrmCVec)
192, 3nvgcl 28547 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
20193expb 1121 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
21203adant3 1133 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
222, 3nvgcl 28547 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
23223expb 1121 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
24233adant2 1132 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
25 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
262, 3, 4, 25nvmval 28569 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
2718, 21, 24, 26syl3anc 1372 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
282, 3, 4, 25nvmval 28569 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
29283adant3r 1182 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
30293adant2r 1180 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
312, 3, 4, 25nvmval 28569 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
32313adant3l 1181 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
33323adant2l 1179 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
3430, 33oveq12d 7182 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
3517, 27, 343eqtr4d 2783 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  cfv 6333  (class class class)co 7164  cc 10606  1c1 10609  -cneg 10942  NrmCVeccnv 28511   +𝑣 cpv 28512  BaseSetcba 28513   ·𝑠OLD cns 28514  𝑣 cnsb 28516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-ltxr 10751  df-sub 10943  df-neg 10944  df-grpo 28420  df-gid 28421  df-ginv 28422  df-gdiv 28423  df-ablo 28472  df-vc 28486  df-nv 28519  df-va 28522  df-ba 28523  df-sm 28524  df-0v 28525  df-vs 28526  df-nmcv 28527
This theorem is referenced by:  vacn  28621  minvecolem2  28802
  Copyright terms: Public domain W3C validator