MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Structured version   Visualization version   GIF version

Theorem nvaddsub4 28998
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 12070 . . . . . 6 -1 ∈ ℂ
2 nvpncan2.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
4 eqid 2739 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 28971 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
61, 5mp3anr1 1456 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
763adant2 1129 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
87oveq2d 7284 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))))
92, 4nvscl 28967 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
101, 9mp3an2 1447 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
112, 4nvscl 28967 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
121, 11mp3an2 1447 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
1310, 12anim12dan 618 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
14133adant2 1129 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
152, 3nvadd4 28966 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
1614, 15syld3an3 1407 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
178, 16eqtrd 2779 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
18 simp1 1134 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → 𝑈 ∈ NrmCVec)
192, 3nvgcl 28961 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
20193expb 1118 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
21203adant3 1130 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
222, 3nvgcl 28961 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
23223expb 1118 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
24233adant2 1129 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
25 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
262, 3, 4, 25nvmval 28983 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
2718, 21, 24, 26syl3anc 1369 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
282, 3, 4, 25nvmval 28983 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
29283adant3r 1179 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
30293adant2r 1177 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
312, 3, 4, 25nvmval 28983 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
32313adant3l 1178 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
33323adant2l 1176 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
3430, 33oveq12d 7286 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
3517, 27, 343eqtr4d 2789 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  cc 10853  1c1 10856  -cneg 11189  NrmCVeccnv 28925   +𝑣 cpv 28926  BaseSetcba 28927   ·𝑠OLD cns 28928  𝑣 cnsb 28930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-neg 11191  df-grpo 28834  df-gid 28835  df-ginv 28836  df-gdiv 28837  df-ablo 28886  df-vc 28900  df-nv 28933  df-va 28936  df-ba 28937  df-sm 28938  df-0v 28939  df-vs 28940  df-nmcv 28941
This theorem is referenced by:  vacn  29035  minvecolem2  29216
  Copyright terms: Public domain W3C validator