Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipsubdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipsubdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
ipsubdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipsubdir | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋)) | |
2 | phnv 28919 | . . . . . . 7 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | neg1cn 11968 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
4 | ipsubdir.1 | . . . . . . . . 9 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2738 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | 4, 5 | nvscl 28731 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
7 | 3, 6 | mp3an2 1451 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
8 | 2, 7 | sylan 583 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
9 | 8 | ex 416 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐵 ∈ 𝑋 → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋)) |
10 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋)) | |
11 | 1, 9, 10 | 3anim123d 1445 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋))) |
12 | 11 | imp 410 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
13 | eqid 2738 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
14 | ipsubdir.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 4, 13, 14 | dipdir 28947 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
16 | 12, 15 | syldan 594 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
17 | ipsubdir.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
18 | 4, 13, 5, 17 | nvmval 28747 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
19 | 2, 18 | syl3an1 1165 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
20 | 19 | 3adant3r3 1186 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
21 | 20 | oveq1d 7246 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶)) |
22 | 4, 5, 14 | dipass 28950 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
23 | 3, 22 | mp3anr1 1460 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
24 | 4, 14 | dipcl 28817 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
25 | 24 | 3expb 1122 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
26 | 2, 25 | sylan 583 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
27 | 26 | mulm1d 11308 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (-1 · (𝐵𝑃𝐶)) = -(𝐵𝑃𝐶)) |
28 | 23, 27 | eqtrd 2778 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
29 | 28 | 3adantr1 1171 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
30 | 29 | oveq2d 7247 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶)) = ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶))) |
31 | 4, 14 | dipcl 28817 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
32 | 31 | 3adant3r2 1185 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃𝐶) ∈ ℂ) |
33 | 24 | 3adant3r1 1184 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
34 | 32, 33 | negsubd 11219 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
35 | 2, 34 | sylan 583 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
36 | 30, 35 | eqtr2d 2779 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
37 | 16, 21, 36 | 3eqtr4d 2788 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ‘cfv 6397 (class class class)co 7231 ℂcc 10751 1c1 10754 + caddc 10756 · cmul 10758 − cmin 11086 -cneg 11087 NrmCVeccnv 28689 +𝑣 cpv 28690 BaseSetcba 28691 ·𝑠OLD cns 28692 −𝑣 cnsb 28694 ·𝑖OLDcdip 28805 CPreHilOLDccphlo 28917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-inf2 9280 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 ax-addf 10832 ax-mulf 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-of 7487 df-om 7663 df-1st 7779 df-2nd 7780 df-supp 7924 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-2o 8223 df-er 8411 df-map 8530 df-ixp 8599 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-fsupp 9010 df-fi 9051 df-sup 9082 df-inf 9083 df-oi 9150 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-uz 12463 df-q 12569 df-rp 12611 df-xneg 12728 df-xadd 12729 df-xmul 12730 df-ioo 12963 df-icc 12966 df-fz 13120 df-fzo 13263 df-seq 13599 df-exp 13660 df-hash 13921 df-cj 14686 df-re 14687 df-im 14688 df-sqrt 14822 df-abs 14823 df-clim 15073 df-sum 15274 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-starv 16841 df-sca 16842 df-vsca 16843 df-ip 16844 df-tset 16845 df-ple 16846 df-ds 16848 df-unif 16849 df-hom 16850 df-cco 16851 df-rest 16951 df-topn 16952 df-0g 16970 df-gsum 16971 df-topgen 16972 df-pt 16973 df-prds 16976 df-xrs 17031 df-qtop 17036 df-imas 17037 df-xps 17039 df-mre 17113 df-mrc 17114 df-acs 17116 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-submnd 18243 df-mulg 18513 df-cntz 18735 df-cmn 19196 df-psmet 20379 df-xmet 20380 df-met 20381 df-bl 20382 df-mopn 20383 df-cnfld 20388 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-cn 22148 df-cnp 22149 df-t1 22235 df-haus 22236 df-tx 22483 df-hmeo 22676 df-xms 23242 df-ms 23243 df-tms 23244 df-grpo 28598 df-gid 28599 df-ginv 28600 df-gdiv 28601 df-ablo 28650 df-vc 28664 df-nv 28697 df-va 28700 df-ba 28701 df-sm 28702 df-0v 28703 df-vs 28704 df-nmcv 28705 df-ims 28706 df-dip 28806 df-ph 28918 |
This theorem is referenced by: dipsubdi 28954 siilem1 28956 |
Copyright terms: Public domain | W3C validator |