![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipsubdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipsubdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
ipsubdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipsubdir | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋)) | |
2 | phnv 30846 | . . . . . . 7 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | neg1cn 12407 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
4 | ipsubdir.1 | . . . . . . . . 9 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2740 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | 4, 5 | nvscl 30658 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
7 | 3, 6 | mp3an2 1449 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
8 | 2, 7 | sylan 579 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
9 | 8 | ex 412 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐵 ∈ 𝑋 → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋)) |
10 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋)) | |
11 | 1, 9, 10 | 3anim123d 1443 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋))) |
12 | 11 | imp 406 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
13 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
14 | ipsubdir.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 4, 13, 14 | dipdir 30874 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
16 | 12, 15 | syldan 590 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
17 | ipsubdir.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
18 | 4, 13, 5, 17 | nvmval 30674 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
19 | 2, 18 | syl3an1 1163 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
20 | 19 | 3adant3r3 1184 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
21 | 20 | oveq1d 7463 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶)) |
22 | 4, 5, 14 | dipass 30877 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
23 | 3, 22 | mp3anr1 1458 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
24 | 4, 14 | dipcl 30744 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
25 | 24 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
26 | 2, 25 | sylan 579 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
27 | 26 | mulm1d 11742 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (-1 · (𝐵𝑃𝐶)) = -(𝐵𝑃𝐶)) |
28 | 23, 27 | eqtrd 2780 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
29 | 28 | 3adantr1 1169 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
30 | 29 | oveq2d 7464 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶)) = ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶))) |
31 | 4, 14 | dipcl 30744 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
32 | 31 | 3adant3r2 1183 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃𝐶) ∈ ℂ) |
33 | 24 | 3adant3r1 1182 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
34 | 32, 33 | negsubd 11653 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
35 | 2, 34 | sylan 579 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
36 | 30, 35 | eqtr2d 2781 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
37 | 16, 21, 36 | 3eqtr4d 2790 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 -cneg 11521 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 −𝑣 cnsb 30621 ·𝑖OLDcdip 30732 CPreHilOLDccphlo 30844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-cn 23256 df-cnp 23257 df-t1 23343 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ph 30845 |
This theorem is referenced by: dipsubdi 30881 siilem1 30883 |
Copyright terms: Public domain | W3C validator |