![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipsubdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipsubdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
ipsubdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipsubdir | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋)) | |
2 | phnv 30843 | . . . . . . 7 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | neg1cn 12378 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
4 | ipsubdir.1 | . . . . . . . . 9 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | eqid 2735 | . . . . . . . . 9 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | 4, 5 | nvscl 30655 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
7 | 3, 6 | mp3an2 1448 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
8 | 2, 7 | sylan 580 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐵 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋) |
9 | 8 | ex 412 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐵 ∈ 𝑋 → (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋)) |
10 | idd 24 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → (𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋)) | |
11 | 1, 9, 10 | 3anim123d 1442 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋))) |
12 | 11 | imp 406 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
13 | eqid 2735 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
14 | ipsubdir.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 4, 13, 14 | dipdir 30871 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
16 | 12, 15 | syldan 591 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
17 | ipsubdir.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
18 | 4, 13, 5, 17 | nvmval 30671 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
19 | 2, 18 | syl3an1 1162 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
20 | 19 | 3adant3r3 1183 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))) |
21 | 20 | oveq1d 7446 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝐵))𝑃𝐶)) |
22 | 4, 5, 14 | dipass 30874 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
23 | 3, 22 | mp3anr1 1457 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶))) |
24 | 4, 14 | dipcl 30741 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
25 | 24 | 3expb 1119 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
26 | 2, 25 | sylan 580 | . . . . . . 7 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
27 | 26 | mulm1d 11713 | . . . . . 6 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (-1 · (𝐵𝑃𝐶)) = -(𝐵𝑃𝐶)) |
28 | 23, 27 | eqtrd 2775 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
29 | 28 | 3adantr1 1168 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶)) |
30 | 29 | oveq2d 7447 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶)) = ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶))) |
31 | 4, 14 | dipcl 30741 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
32 | 31 | 3adant3r2 1182 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃𝐶) ∈ ℂ) |
33 | 24 | 3adant3r1 1181 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑃𝐶) ∈ ℂ) |
34 | 32, 33 | negsubd 11624 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
35 | 2, 34 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
36 | 30, 35 | eqtr2d 2776 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD ‘𝑈)𝐵)𝑃𝐶))) |
37 | 16, 21, 36 | 3eqtr4d 2785 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 -cneg 11491 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 −𝑣 cnsb 30618 ·𝑖OLDcdip 30729 CPreHilOLDccphlo 30841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-cn 23251 df-cnp 23252 df-t1 23338 df-haus 23339 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-dip 30730 df-ph 30842 |
This theorem is referenced by: dipsubdi 30878 siilem1 30880 |
Copyright terms: Public domain | W3C validator |