MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipsubdir Structured version   Visualization version   GIF version

Theorem dipsubdir 30810
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipsubdir.1 𝑋 = (BaseSet‘𝑈)
ipsubdir.3 𝑀 = ( −𝑣𝑈)
ipsubdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipsubdir ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))

Proof of Theorem dipsubdir
StepHypRef Expression
1 idd 24 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐴𝑋𝐴𝑋))
2 phnv 30776 . . . . . . 7 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
3 neg1cn 12131 . . . . . . . 8 -1 ∈ ℂ
4 ipsubdir.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
5 eqid 2729 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
64, 5nvscl 30588 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
73, 6mp3an2 1451 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
82, 7sylan 580 . . . . . 6 ((𝑈 ∈ CPreHilOLD𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
98ex 412 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐵𝑋 → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋))
10 idd 24 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐶𝑋𝐶𝑋))
111, 9, 103anim123d 1445 . . . 4 (𝑈 ∈ CPreHilOLD → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋)))
1211imp 406 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋))
13 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
14 ipsubdir.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
154, 13, 14dipdir 30804 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋)) → ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
1612, 15syldan 591 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
17 ipsubdir.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
184, 13, 5, 17nvmval 30604 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
192, 18syl3an1 1163 . . . 4 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
20193adant3r3 1185 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2120oveq1d 7368 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶))
224, 5, 14dipass 30807 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (-1 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶)))
233, 22mp3anr1 1460 . . . . . 6 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶)))
244, 14dipcl 30674 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑃𝐶) ∈ ℂ)
25243expb 1120 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
262, 25sylan 580 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
2726mulm1d 11590 . . . . . 6 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → (-1 · (𝐵𝑃𝐶)) = -(𝐵𝑃𝐶))
2823, 27eqtrd 2764 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶))
29283adantr1 1170 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶))
3029oveq2d 7369 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)) = ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)))
314, 14dipcl 30674 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
32313adant3r2 1184 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃𝐶) ∈ ℂ)
33243adant3r1 1183 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
3432, 33negsubd 11499 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
352, 34sylan 580 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
3630, 35eqtr2d 2765 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
3716, 21, 363eqtr4d 2774 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366  NrmCVeccnv 30546   +𝑣 cpv 30547  BaseSetcba 30548   ·𝑠OLD cns 30549  𝑣 cnsb 30551  ·𝑖OLDcdip 30662  CPreHilOLDccphlo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-cn 23130  df-cnp 23131  df-t1 23217  df-haus 23218  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ph 30775
This theorem is referenced by:  dipsubdi  30811  siilem1  30813
  Copyright terms: Public domain W3C validator