MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvpi Structured version   Visualization version   GIF version

Theorem nvpi 28930
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvpi ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))

Proof of Theorem nvpi
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 ax-icn 10861 . . . . . . . 8 i ∈ ℂ
3 nvdif.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
4 nvdif.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
53, 4nvscl 28889 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
62, 5mp3an2 1447 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
763adant2 1129 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
8 nvdif.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
93, 8nvgcl 28883 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
107, 9syld3an3 1407 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
11 nvdif.6 . . . . . 6 𝑁 = (normCV𝑈)
123, 11nvcl 28924 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
131, 10, 12syl2anc 583 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
1413recnd 10934 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ)
1514mulid2d 10924 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
162absnegi 15040 . . . . 5 (abs‘-i) = (abs‘i)
17 absi 14926 . . . . 5 (abs‘i) = 1
1816, 17eqtri 2766 . . . 4 (abs‘-i) = 1
1918oveq1i 7265 . . 3 ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵))))
20 negicn 11152 . . . . . 6 -i ∈ ℂ
213, 4, 11nvs 28926 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
2220, 21mp3an2 1447 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
231, 10, 22syl2anc 583 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
24 simp2 1135 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
253, 8, 4nvdi 28893 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
2620, 25mp3anr1 1456 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
271, 24, 7, 26syl12anc 833 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
282, 2mulneg1i 11351 . . . . . . . . . . 11 (-i · i) = -(i · i)
29 ixi 11534 . . . . . . . . . . . . 13 (i · i) = -1
3029negeqi 11144 . . . . . . . . . . . 12 -(i · i) = --1
31 negneg1e1 12021 . . . . . . . . . . . 12 --1 = 1
3230, 31eqtri 2766 . . . . . . . . . . 11 -(i · i) = 1
3328, 32eqtri 2766 . . . . . . . . . 10 (-i · i) = 1
3433oveq1i 7265 . . . . . . . . 9 ((-i · i)𝑆𝐵) = (1𝑆𝐵)
353, 4nvsass 28891 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
3620, 35mp3anr1 1456 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
372, 36mpanr1 699 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
383, 4nvsid 28890 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3934, 37, 383eqtr3a 2803 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
40393adant2 1129 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
4140oveq2d 7271 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺𝐵))
423, 4nvscl 28889 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
4320, 42mp3an2 1447 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
44433adant3 1130 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆𝐴) ∈ 𝑋)
453, 8nvcom 28884 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (-i𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4644, 45syld3an2 1409 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4727, 41, 463eqtrd 2782 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = (𝐵𝐺(-i𝑆𝐴)))
4847fveq2d 6760 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
4923, 48eqtr3d 2780 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5019, 49eqtr3id 2793 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5115, 50eqtr3d 2780 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803  ici 10804   · cmul 10807  -cneg 11136  abscabs 14873  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  normCVcnmcv 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863
This theorem is referenced by:  dipcj  28977
  Copyright terms: Public domain W3C validator