MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvpi Structured version   Visualization version   GIF version

Theorem nvpi 30695
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvpi ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))

Proof of Theorem nvpi
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 ax-icn 11211 . . . . . . . 8 i ∈ ℂ
3 nvdif.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
4 nvdif.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
53, 4nvscl 30654 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
62, 5mp3an2 1448 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
763adant2 1130 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
8 nvdif.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
93, 8nvgcl 30648 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
107, 9syld3an3 1408 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
11 nvdif.6 . . . . . 6 𝑁 = (normCV𝑈)
123, 11nvcl 30689 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
131, 10, 12syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
1413recnd 11286 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ)
1514mullidd 11276 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
162absnegi 15435 . . . . 5 (abs‘-i) = (abs‘i)
17 absi 15321 . . . . 5 (abs‘i) = 1
1816, 17eqtri 2762 . . . 4 (abs‘-i) = 1
1918oveq1i 7440 . . 3 ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵))))
20 negicn 11506 . . . . . 6 -i ∈ ℂ
213, 4, 11nvs 30691 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
2220, 21mp3an2 1448 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
231, 10, 22syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
24 simp2 1136 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
253, 8, 4nvdi 30658 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
2620, 25mp3anr1 1457 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
271, 24, 7, 26syl12anc 837 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
282, 2mulneg1i 11706 . . . . . . . . . . 11 (-i · i) = -(i · i)
29 ixi 11889 . . . . . . . . . . . . 13 (i · i) = -1
3029negeqi 11498 . . . . . . . . . . . 12 -(i · i) = --1
31 negneg1e1 12381 . . . . . . . . . . . 12 --1 = 1
3230, 31eqtri 2762 . . . . . . . . . . 11 -(i · i) = 1
3328, 32eqtri 2762 . . . . . . . . . 10 (-i · i) = 1
3433oveq1i 7440 . . . . . . . . 9 ((-i · i)𝑆𝐵) = (1𝑆𝐵)
353, 4nvsass 30656 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
3620, 35mp3anr1 1457 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
372, 36mpanr1 703 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
383, 4nvsid 30655 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3934, 37, 383eqtr3a 2798 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
40393adant2 1130 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
4140oveq2d 7446 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺𝐵))
423, 4nvscl 30654 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
4320, 42mp3an2 1448 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
44433adant3 1131 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆𝐴) ∈ 𝑋)
453, 8nvcom 30649 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (-i𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4644, 45syld3an2 1410 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4727, 41, 463eqtrd 2778 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = (𝐵𝐺(-i𝑆𝐴)))
4847fveq2d 6910 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
4923, 48eqtr3d 2776 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5019, 49eqtr3id 2788 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5115, 50eqtr3d 2776 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  1c1 11153  ici 11154   · cmul 11157  -cneg 11490  abscabs 15269  NrmCVeccnv 30612   +𝑣 cpv 30613  BaseSetcba 30614   ·𝑠OLD cns 30615  normCVcnmcv 30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-grpo 30521  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628
This theorem is referenced by:  dipcj  30742
  Copyright terms: Public domain W3C validator