Proof of Theorem nvpi
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑈 ∈ NrmCVec) |
2 | | ax-icn 10788 |
. . . . . . . 8
⊢ i ∈
ℂ |
3 | | nvdif.1 |
. . . . . . . . 9
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | | nvdif.4 |
. . . . . . . . 9
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
5 | 3, 4 | nvscl 28707 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ i ∈
ℂ ∧ 𝐵 ∈
𝑋) → (i𝑆𝐵) ∈ 𝑋) |
6 | 2, 5 | mp3an2 1451 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
7 | 6 | 3adant2 1133 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
8 | | nvdif.2 |
. . . . . . 7
⊢ 𝐺 = ( +𝑣
‘𝑈) |
9 | 3, 8 | nvgcl 28701 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) |
10 | 7, 9 | syld3an3 1411 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) |
11 | | nvdif.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
12 | 3, 11 | nvcl 28742 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ) |
13 | 1, 10, 12 | syl2anc 587 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ) |
14 | 13 | recnd 10861 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ) |
15 | 14 | mulid2d 10851 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐴𝐺(i𝑆𝐵)))) |
16 | 2 | absnegi 14964 |
. . . . 5
⊢
(abs‘-i) = (abs‘i) |
17 | | absi 14850 |
. . . . 5
⊢
(abs‘i) = 1 |
18 | 16, 17 | eqtri 2765 |
. . . 4
⊢
(abs‘-i) = 1 |
19 | 18 | oveq1i 7223 |
. . 3
⊢
((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) |
20 | | negicn 11079 |
. . . . . 6
⊢ -i ∈
ℂ |
21 | 3, 4, 11 | nvs 28744 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ -i ∈
ℂ ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵))))) |
22 | 20, 21 | mp3an2 1451 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵))))) |
23 | 1, 10, 22 | syl2anc 587 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵))))) |
24 | | simp2 1139 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
25 | 3, 8, 4 | nvdi 28711 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ (-i ∈
ℂ ∧ 𝐴 ∈
𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵)))) |
26 | 20, 25 | mp3anr1 1460 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵)))) |
27 | 1, 24, 7, 26 | syl12anc 837 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵)))) |
28 | 2, 2 | mulneg1i 11278 |
. . . . . . . . . . 11
⊢ (-i
· i) = -(i · i) |
29 | | ixi 11461 |
. . . . . . . . . . . . 13
⊢ (i
· i) = -1 |
30 | 29 | negeqi 11071 |
. . . . . . . . . . . 12
⊢ -(i
· i) = --1 |
31 | | negneg1e1 11948 |
. . . . . . . . . . . 12
⊢ --1 =
1 |
32 | 30, 31 | eqtri 2765 |
. . . . . . . . . . 11
⊢ -(i
· i) = 1 |
33 | 28, 32 | eqtri 2765 |
. . . . . . . . . 10
⊢ (-i
· i) = 1 |
34 | 33 | oveq1i 7223 |
. . . . . . . . 9
⊢ ((-i
· i)𝑆𝐵) = (1𝑆𝐵) |
35 | 3, 4 | nvsass 28709 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (-i ∈
ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵))) |
36 | 20, 35 | mp3anr1 1460 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈
ℂ ∧ 𝐵 ∈
𝑋)) → ((-i ·
i)𝑆𝐵) = (-i𝑆(i𝑆𝐵))) |
37 | 2, 36 | mpanr1 703 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵))) |
38 | 3, 4 | nvsid 28708 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1𝑆𝐵) = 𝐵) |
39 | 34, 37, 38 | 3eqtr3a 2802 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵) |
40 | 39 | 3adant2 1133 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵) |
41 | 40 | oveq2d 7229 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺𝐵)) |
42 | 3, 4 | nvscl 28707 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ -i ∈
ℂ ∧ 𝐴 ∈
𝑋) → (-i𝑆𝐴) ∈ 𝑋) |
43 | 20, 42 | mp3an2 1451 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-i𝑆𝐴) ∈ 𝑋) |
44 | 43 | 3adant3 1134 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-i𝑆𝐴) ∈ 𝑋) |
45 | 3, 8 | nvcom 28702 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ (-i𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴))) |
46 | 44, 45 | syld3an2 1413 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴))) |
47 | 27, 41, 46 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = (𝐵𝐺(-i𝑆𝐴))) |
48 | 47 | fveq2d 6721 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) |
49 | 23, 48 | eqtr3d 2779 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) |
50 | 19, 49 | eqtr3id 2792 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) |
51 | 15, 50 | eqtr3d 2779 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) |