Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vc2OLD | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 23846 together with cvsclm 23878 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
vc2OLD | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vciOLD.2 | . . . 4 ⊢ 𝑆 = (2nd ‘𝑊) | |
3 | vciOLD.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | vcidOLD 28499 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
5 | 4, 4 | oveq12d 7188 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)) |
6 | df-2 11779 | . . . 4 ⊢ 2 = (1 + 1) | |
7 | 6 | oveq1i 7180 | . . 3 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
8 | ax-1cn 10673 | . . . 4 ⊢ 1 ∈ ℂ | |
9 | 1, 2, 3 | vcdir 28501 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
10 | 8, 9 | mp3anr1 1459 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
11 | 8, 10 | mpanr1 703 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
12 | 7, 11 | eqtr2id 2786 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴)) |
13 | 5, 12 | eqtr3d 2775 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ran crn 5526 ‘cfv 6339 (class class class)co 7170 1st c1st 7712 2nd c2nd 7713 ℂcc 10613 1c1 10616 + caddc 10618 2c2 11771 CVecOLDcvc 28493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 ax-1cn 10673 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 df-1st 7714 df-2nd 7715 df-2 11779 df-vc 28494 |
This theorem is referenced by: nv2 28567 ipdirilem 28764 |
Copyright terms: Public domain | W3C validator |