![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vc2OLD | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 24610 together with cvsclm 24642 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
vc2OLD | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vciOLD.2 | . . . 4 ⊢ 𝑆 = (2nd ‘𝑊) | |
3 | vciOLD.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | vcidOLD 29817 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
5 | 4, 4 | oveq12d 7427 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)) |
6 | df-2 12275 | . . . 4 ⊢ 2 = (1 + 1) | |
7 | 6 | oveq1i 7419 | . . 3 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
8 | ax-1cn 11168 | . . . 4 ⊢ 1 ∈ ℂ | |
9 | 1, 2, 3 | vcdir 29819 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
10 | 8, 9 | mp3anr1 1459 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
11 | 8, 10 | mpanr1 702 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
12 | 7, 11 | eqtr2id 2786 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴)) |
13 | 5, 12 | eqtr3d 2775 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ran crn 5678 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 ℂcc 11108 1c1 11111 + caddc 11113 2c2 12267 CVecOLDcvc 29811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-1cn 11168 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-1st 7975 df-2nd 7976 df-2 12275 df-vc 29812 |
This theorem is referenced by: nv2 29885 ipdirilem 30082 |
Copyright terms: Public domain | W3C validator |