MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc2OLD Structured version   Visualization version   GIF version

Theorem vc2OLD 28930
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 24257 together with cvsclm 24289 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vc2OLD ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))

Proof of Theorem vc2OLD
StepHypRef Expression
1 vciOLD.1 . . . 4 𝐺 = (1st𝑊)
2 vciOLD.2 . . . 4 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3vcidOLD 28926 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
54, 4oveq12d 7293 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴))
6 df-2 12036 . . . 4 2 = (1 + 1)
76oveq1i 7285 . . 3 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
8 ax-1cn 10929 . . . 4 1 ∈ ℂ
91, 2, 3vcdir 28928 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
108, 9mp3anr1 1457 . . . 4 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
118, 10mpanr1 700 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
127, 11eqtr2id 2791 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴))
135, 12eqtr3d 2780 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  cc 10869  1c1 10872   + caddc 10874  2c2 12028  CVecOLDcvc 28920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-1cn 10929
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-2 12036  df-vc 28921
This theorem is referenced by:  nv2  28994  ipdirilem  29191
  Copyright terms: Public domain W3C validator