MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc2OLD Structured version   Visualization version   GIF version

Theorem vc2OLD 29552
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 24473 together with cvsclm 24505 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vc2OLD ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))

Proof of Theorem vc2OLD
StepHypRef Expression
1 vciOLD.1 . . . 4 𝐺 = (1st𝑊)
2 vciOLD.2 . . . 4 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3vcidOLD 29548 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
54, 4oveq12d 7376 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴))
6 df-2 12221 . . . 4 2 = (1 + 1)
76oveq1i 7368 . . 3 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
8 ax-1cn 11114 . . . 4 1 ∈ ℂ
91, 2, 3vcdir 29550 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
108, 9mp3anr1 1459 . . . 4 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
118, 10mpanr1 702 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
127, 11eqtr2id 2786 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴))
135, 12eqtr3d 2775 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ran crn 5635  cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  cc 11054  1c1 11057   + caddc 11059  2c2 12213  CVecOLDcvc 29542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673  ax-1cn 11114
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-1st 7922  df-2nd 7923  df-2 12221  df-vc 29543
This theorem is referenced by:  nv2  29616  ipdirilem  29813
  Copyright terms: Public domain W3C validator