![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vc2OLD | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 25034 together with cvsclm 25066 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
vc2OLD | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vciOLD.2 | . . . 4 ⊢ 𝑆 = (2nd ‘𝑊) | |
3 | vciOLD.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | vcidOLD 30387 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
5 | 4, 4 | oveq12d 7438 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)) |
6 | df-2 12306 | . . . 4 ⊢ 2 = (1 + 1) | |
7 | 6 | oveq1i 7430 | . . 3 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
8 | ax-1cn 11197 | . . . 4 ⊢ 1 ∈ ℂ | |
9 | 1, 2, 3 | vcdir 30389 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
10 | 8, 9 | mp3anr1 1455 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
11 | 8, 10 | mpanr1 702 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
12 | 7, 11 | eqtr2id 2781 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴)) |
13 | 5, 12 | eqtr3d 2770 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ran crn 5679 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 ℂcc 11137 1c1 11140 + caddc 11142 2c2 12298 CVecOLDcvc 30381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 ax-1cn 11197 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-1st 7993 df-2nd 7994 df-2 12306 df-vc 30382 |
This theorem is referenced by: nv2 30455 ipdirilem 30652 |
Copyright terms: Public domain | W3C validator |