| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vc2OLD | Structured version Visualization version GIF version | ||
| Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 25045 together with cvsclm 25077 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
| vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| vc2OLD | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | vciOLD.2 | . . . 4 ⊢ 𝑆 = (2nd ‘𝑊) | |
| 3 | vciOLD.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | vcidOLD 30545 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 5 | 4, 4 | oveq12d 7423 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)) |
| 6 | df-2 12303 | . . . 4 ⊢ 2 = (1 + 1) | |
| 7 | 6 | oveq1i 7415 | . . 3 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
| 8 | ax-1cn 11187 | . . . 4 ⊢ 1 ∈ ℂ | |
| 9 | 1, 2, 3 | vcdir 30547 | . . . . 5 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 10 | 8, 9 | mp3anr1 1460 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 11 | 8, 10 | mpanr1 703 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 12 | 7, 11 | eqtr2id 2783 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴)) |
| 13 | 5, 12 | eqtr3d 2772 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ℂcc 11127 1c1 11130 + caddc 11132 2c2 12295 CVecOLDcvc 30539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-1st 7988 df-2nd 7989 df-2 12303 df-vc 30540 |
| This theorem is referenced by: nv2 30613 ipdirilem 30810 |
| Copyright terms: Public domain | W3C validator |