MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc2OLD Structured version   Visualization version   GIF version

Theorem vc2OLD 27974
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete theorem, use clmvs2 23270 together with cvsclm 23302 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vc2OLD ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))

Proof of Theorem vc2OLD
StepHypRef Expression
1 vciOLD.1 . . . 4 𝐺 = (1st𝑊)
2 vciOLD.2 . . . 4 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3vcidOLD 27970 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
54, 4oveq12d 6928 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴))
6 df-2 11421 . . . 4 2 = (1 + 1)
76oveq1i 6920 . . 3 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
8 ax-1cn 10317 . . . 4 1 ∈ ℂ
91, 2, 3vcdir 27972 . . . . 5 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
108, 9mp3anr1 1586 . . . 4 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
118, 10mpanr1 694 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
127, 11syl5req 2874 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (2𝑆𝐴))
135, 12eqtr3d 2863 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  ran crn 5347  cfv 6127  (class class class)co 6910  1st c1st 7431  2nd c2nd 7432  cc 10257  1c1 10260   + caddc 10262  2c2 11413  CVecOLDcvc 27964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-1cn 10317
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-ov 6913  df-1st 7433  df-2nd 7434  df-2 11421  df-vc 27965
This theorem is referenced by:  nv2  28038  ipdirilem  28235
  Copyright terms: Public domain W3C validator