MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnosub Structured version   Visualization version   GIF version

Theorem lnosub 30703
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnosub.1 𝑋 = (BaseSet‘𝑈)
lnosub.5 𝑀 = ( −𝑣𝑈)
lnosub.6 𝑁 = ( −𝑣𝑊)
lnosub.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnosub (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))

Proof of Theorem lnosub
StepHypRef Expression
1 neg1cn 12113 . . . 4 -1 ∈ ℂ
2 lnosub.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 eqid 2729 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 eqid 2729 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
5 eqid 2729 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
6 eqid 2729 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2729 . . . . 5 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnosub.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 30698 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
101, 9mp3anr1 1460 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
1110ancom2s 650 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
12 lnosub.5 . . . . . 6 𝑀 = ( −𝑣𝑈)
132, 4, 6, 12nvmval2 30587 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
14133expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
15143ad2antl1 1186 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
1615fveq2d 6826 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)))
17 simpl2 1193 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
182, 3, 8lnof 30699 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
19 simpl 482 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
20 ffvelcdm 7015 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
2118, 19, 20syl2an 596 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
22 simpr 484 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
23 ffvelcdm 7015 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵𝑋) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
2418, 22, 23syl2an 596 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
25 lnosub.6 . . . 4 𝑁 = ( −𝑣𝑊)
263, 5, 7, 25nvmval2 30587 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2717, 21, 24, 26syl3anc 1373 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2811, 16, 273eqtr4d 2774 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010  -cneg 11348  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  𝑣 cnsb 30533   LnOp clno 30684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-lno 30688
This theorem is referenced by:  blometi  30747  blocnilem  30748  ubthlem2  30815
  Copyright terms: Public domain W3C validator