MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnosub Structured version   Visualization version   GIF version

Theorem lnosub 28536
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnosub.1 𝑋 = (BaseSet‘𝑈)
lnosub.5 𝑀 = ( −𝑣𝑈)
lnosub.6 𝑁 = ( −𝑣𝑊)
lnosub.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnosub (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))

Proof of Theorem lnosub
StepHypRef Expression
1 neg1cn 11752 . . . 4 -1 ∈ ℂ
2 lnosub.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 eqid 2821 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 eqid 2821 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
5 eqid 2821 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
6 eqid 2821 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2821 . . . . 5 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnosub.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 28531 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
101, 9mp3anr1 1454 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
1110ancom2s 648 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
12 lnosub.5 . . . . . 6 𝑀 = ( −𝑣𝑈)
132, 4, 6, 12nvmval2 28420 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
14133expb 1116 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
15143ad2antl1 1181 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
1615fveq2d 6674 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)))
17 simpl2 1188 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
182, 3, 8lnof 28532 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
19 simpl 485 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
20 ffvelrn 6849 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
2118, 19, 20syl2an 597 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
22 simpr 487 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
23 ffvelrn 6849 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵𝑋) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
2418, 22, 23syl2an 597 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
25 lnosub.6 . . . 4 𝑁 = ( −𝑣𝑊)
263, 5, 7, 25nvmval2 28420 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2717, 21, 24, 26syl3anc 1367 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2811, 16, 273eqtr4d 2866 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538  -cneg 10871  NrmCVeccnv 28361   +𝑣 cpv 28362  BaseSetcba 28363   ·𝑠OLD cns 28364  𝑣 cnsb 28366   LnOp clno 28517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-lno 28521
This theorem is referenced by:  blometi  28580  blocnilem  28581  ubthlem2  28648
  Copyright terms: Public domain W3C validator