MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnosub Structured version   Visualization version   GIF version

Theorem lnosub 29999
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnosub.1 𝑋 = (BaseSetβ€˜π‘ˆ)
lnosub.5 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
lnosub.6 𝑁 = ( βˆ’π‘£ β€˜π‘Š)
lnosub.7 𝐿 = (π‘ˆ LnOp π‘Š)
Assertion
Ref Expression
lnosub (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜(𝐴𝑀𝐡)) = ((π‘‡β€˜π΄)𝑁(π‘‡β€˜π΅)))

Proof of Theorem lnosub
StepHypRef Expression
1 neg1cn 12322 . . . 4 -1 ∈ β„‚
2 lnosub.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
3 eqid 2732 . . . . 5 (BaseSetβ€˜π‘Š) = (BaseSetβ€˜π‘Š)
4 eqid 2732 . . . . 5 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
5 eqid 2732 . . . . 5 ( +𝑣 β€˜π‘Š) = ( +𝑣 β€˜π‘Š)
6 eqid 2732 . . . . 5 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
7 eqid 2732 . . . . 5 ( ·𝑠OLD β€˜π‘Š) = ( ·𝑠OLD β€˜π‘Š)
8 lnosub.7 . . . . 5 𝐿 = (π‘ˆ LnOp π‘Š)
92, 3, 4, 5, 6, 7, 8lnolin 29994 . . . 4 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π΅))( +𝑣 β€˜π‘Š)(π‘‡β€˜π΄)))
101, 9mp3anr1 1458 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π΅))( +𝑣 β€˜π‘Š)(π‘‡β€˜π΄)))
1110ancom2s 648 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π΅))( +𝑣 β€˜π‘Š)(π‘‡β€˜π΄)))
12 lnosub.5 . . . . . 6 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
132, 4, 6, 12nvmval2 29883 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝑀𝐡) = ((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴))
14133expb 1120 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝑀𝐡) = ((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴))
15143ad2antl1 1185 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝑀𝐡) = ((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴))
1615fveq2d 6892 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜(𝐴𝑀𝐡)) = (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝐡)( +𝑣 β€˜π‘ˆ)𝐴)))
17 simpl2 1192 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ π‘Š ∈ NrmCVec)
182, 3, 8lnof 29995 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ 𝑇:π‘‹βŸΆ(BaseSetβ€˜π‘Š))
19 simpl 483 . . . 4 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
20 ffvelcdm 7080 . . . 4 ((𝑇:π‘‹βŸΆ(BaseSetβ€˜π‘Š) ∧ 𝐴 ∈ 𝑋) β†’ (π‘‡β€˜π΄) ∈ (BaseSetβ€˜π‘Š))
2118, 19, 20syl2an 596 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜π΄) ∈ (BaseSetβ€˜π‘Š))
22 simpr 485 . . . 4 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐡 ∈ 𝑋)
23 ffvelcdm 7080 . . . 4 ((𝑇:π‘‹βŸΆ(BaseSetβ€˜π‘Š) ∧ 𝐡 ∈ 𝑋) β†’ (π‘‡β€˜π΅) ∈ (BaseSetβ€˜π‘Š))
2418, 22, 23syl2an 596 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜π΅) ∈ (BaseSetβ€˜π‘Š))
25 lnosub.6 . . . 4 𝑁 = ( βˆ’π‘£ β€˜π‘Š)
263, 5, 7, 25nvmval2 29883 . . 3 ((π‘Š ∈ NrmCVec ∧ (π‘‡β€˜π΄) ∈ (BaseSetβ€˜π‘Š) ∧ (π‘‡β€˜π΅) ∈ (BaseSetβ€˜π‘Š)) β†’ ((π‘‡β€˜π΄)𝑁(π‘‡β€˜π΅)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π΅))( +𝑣 β€˜π‘Š)(π‘‡β€˜π΄)))
2717, 21, 24, 26syl3anc 1371 . 2 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((π‘‡β€˜π΄)𝑁(π‘‡β€˜π΅)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π΅))( +𝑣 β€˜π‘Š)(π‘‡β€˜π΄)))
2811, 16, 273eqtr4d 2782 1 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (π‘‡β€˜(𝐴𝑀𝐡)) = ((π‘‡β€˜π΄)𝑁(π‘‡β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  1c1 11107  -cneg 11441  NrmCVeccnv 29824   +𝑣 cpv 29825  BaseSetcba 29826   ·𝑠OLD cns 29827   βˆ’π‘£ cnsb 29829   LnOp clno 29980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-neg 11443  df-grpo 29733  df-gid 29734  df-ginv 29735  df-gdiv 29736  df-ablo 29785  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-0v 29838  df-vs 29839  df-nmcv 29840  df-lno 29984
This theorem is referenced by:  blometi  30043  blocnilem  30044  ubthlem2  30111
  Copyright terms: Public domain W3C validator