Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnosub | Structured version Visualization version GIF version |
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnosub.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘𝑊) |
lnosub.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnosub | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12087 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | lnosub.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2738 | . . . . 5 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
5 | eqid 2738 | . . . . 5 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
6 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
8 | lnosub.7 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 29116 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
10 | 1, 9 | mp3anr1 1457 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
11 | 10 | ancom2s 647 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
12 | lnosub.5 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
13 | 2, 4, 6, 12 | nvmval2 29005 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
14 | 13 | 3expb 1119 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
15 | 14 | 3ad2antl1 1184 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
16 | 15 | fveq2d 6778 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴))) |
17 | simpl2 1191 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
18 | 2, 3, 8 | lnof 29117 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
19 | simpl 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
20 | ffvelrn 6959 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
21 | 18, 19, 20 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
22 | simpr 485 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
23 | ffvelrn 6959 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵 ∈ 𝑋) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) | |
24 | 18, 22, 23 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) |
25 | lnosub.6 | . . . 4 ⊢ 𝑁 = ( −𝑣 ‘𝑊) | |
26 | 3, 5, 7, 25 | nvmval2 29005 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
27 | 17, 21, 24, 26 | syl3anc 1370 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
28 | 11, 16, 27 | 3eqtr4d 2788 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 -cneg 11206 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 −𝑣 cnsb 28951 LnOp clno 29102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-lno 29106 |
This theorem is referenced by: blometi 29165 blocnilem 29166 ubthlem2 29233 |
Copyright terms: Public domain | W3C validator |