MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnosub Structured version   Visualization version   GIF version

Theorem lnosub 30791
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnosub.1 𝑋 = (BaseSet‘𝑈)
lnosub.5 𝑀 = ( −𝑣𝑈)
lnosub.6 𝑁 = ( −𝑣𝑊)
lnosub.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnosub (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))

Proof of Theorem lnosub
StepHypRef Expression
1 neg1cn 12407 . . . 4 -1 ∈ ℂ
2 lnosub.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 eqid 2740 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 eqid 2740 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
5 eqid 2740 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
6 eqid 2740 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2740 . . . . 5 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnosub.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 30786 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
101, 9mp3anr1 1458 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐵𝑋𝐴𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
1110ancom2s 649 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
12 lnosub.5 . . . . . 6 𝑀 = ( −𝑣𝑈)
132, 4, 6, 12nvmval2 30675 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
14133expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
15143ad2antl1 1185 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴))
1615fveq2d 6924 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD𝑈)𝐵)( +𝑣𝑈)𝐴)))
17 simpl2 1192 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
182, 3, 8lnof 30787 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
19 simpl 482 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
20 ffvelcdm 7115 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
2118, 19, 20syl2an 595 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
22 simpr 484 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
23 ffvelcdm 7115 . . . 4 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵𝑋) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
2418, 22, 23syl2an 595 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
25 lnosub.6 . . . 4 𝑁 = ( −𝑣𝑊)
263, 5, 7, 25nvmval2 30675 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2717, 21, 24, 26syl3anc 1371 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((𝑇𝐴)𝑁(𝑇𝐵)) = ((-1( ·𝑠OLD𝑊)(𝑇𝐵))( +𝑣𝑊)(𝑇𝐴)))
2811, 16, 273eqtr4d 2790 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇𝐴)𝑁(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185  -cneg 11521  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  𝑣 cnsb 30621   LnOp clno 30772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-lno 30776
This theorem is referenced by:  blometi  30835  blocnilem  30836  ubthlem2  30903
  Copyright terms: Public domain W3C validator