| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnosub | Structured version Visualization version GIF version | ||
| Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnosub.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘𝑊) |
| lnosub.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnosub | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12113 | . . . 4 ⊢ -1 ∈ ℂ | |
| 2 | lnosub.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 5 | eqid 2729 | . . . . 5 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 7 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 8 | lnosub.7 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 30698 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 10 | 1, 9 | mp3anr1 1460 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 11 | 10 | ancom2s 650 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 12 | lnosub.5 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 13 | 2, 4, 6, 12 | nvmval2 30587 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 14 | 13 | 3expb 1120 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 15 | 14 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 16 | 15 | fveq2d 6826 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴))) |
| 17 | simpl2 1193 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
| 18 | 2, 3, 8 | lnof 30699 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 19 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 20 | ffvelcdm 7015 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
| 21 | 18, 19, 20 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 23 | ffvelcdm 7015 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵 ∈ 𝑋) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) | |
| 24 | 18, 22, 23 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) |
| 25 | lnosub.6 | . . . 4 ⊢ 𝑁 = ( −𝑣 ‘𝑊) | |
| 26 | 3, 5, 7, 25 | nvmval2 30587 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 27 | 17, 21, 24, 26 | syl3anc 1373 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 28 | 11, 16, 27 | 3eqtr4d 2774 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 1c1 11010 -cneg 11348 NrmCVeccnv 30528 +𝑣 cpv 30529 BaseSetcba 30530 ·𝑠OLD cns 30531 −𝑣 cnsb 30533 LnOp clno 30684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-lno 30688 |
| This theorem is referenced by: blometi 30747 blocnilem 30748 ubthlem2 30815 |
| Copyright terms: Public domain | W3C validator |