![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnosub | Structured version Visualization version GIF version |
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnosub.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘𝑊) |
lnosub.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnosub | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12313 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | lnosub.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2733 | . . . . 5 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | eqid 2733 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
5 | eqid 2733 | . . . . 5 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
6 | eqid 2733 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | eqid 2733 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
8 | lnosub.7 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 29972 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
10 | 1, 9 | mp3anr1 1459 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
11 | 10 | ancom2s 649 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
12 | lnosub.5 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
13 | 2, 4, 6, 12 | nvmval2 29861 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
14 | 13 | 3expb 1121 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
15 | 14 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
16 | 15 | fveq2d 6885 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴))) |
17 | simpl2 1193 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
18 | 2, 3, 8 | lnof 29973 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
19 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
20 | ffvelcdm 7071 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
21 | 18, 19, 20 | syl2an 597 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
22 | simpr 486 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
23 | ffvelcdm 7071 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵 ∈ 𝑋) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) | |
24 | 18, 22, 23 | syl2an 597 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) |
25 | lnosub.6 | . . . 4 ⊢ 𝑁 = ( −𝑣 ‘𝑊) | |
26 | 3, 5, 7, 25 | nvmval2 29861 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
27 | 17, 21, 24, 26 | syl3anc 1372 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
28 | 11, 16, 27 | 3eqtr4d 2783 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⟶wf 6531 ‘cfv 6535 (class class class)co 7396 ℂcc 11095 1c1 11098 -cneg 11432 NrmCVeccnv 29802 +𝑣 cpv 29803 BaseSetcba 29804 ·𝑠OLD cns 29805 −𝑣 cnsb 29807 LnOp clno 29958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-ltxr 11240 df-sub 11433 df-neg 11434 df-grpo 29711 df-gid 29712 df-ginv 29713 df-gdiv 29714 df-ablo 29763 df-vc 29777 df-nv 29810 df-va 29813 df-ba 29814 df-sm 29815 df-0v 29816 df-vs 29817 df-nmcv 29818 df-lno 29962 |
This theorem is referenced by: blometi 30021 blocnilem 30022 ubthlem2 30089 |
Copyright terms: Public domain | W3C validator |