| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnosub | Structured version Visualization version GIF version | ||
| Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnosub.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnosub.5 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| lnosub.6 | ⊢ 𝑁 = ( −𝑣 ‘𝑊) |
| lnosub.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnosub | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12171 | . . . 4 ⊢ -1 ∈ ℂ | |
| 2 | lnosub.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 5 | eqid 2729 | . . . . 5 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 7 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 8 | lnosub.7 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 30683 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 10 | 1, 9 | mp3anr1 1460 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 11 | 10 | ancom2s 650 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 12 | lnosub.5 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 13 | 2, 4, 6, 12 | nvmval2 30572 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 14 | 13 | 3expb 1120 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 15 | 14 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑀𝐵) = ((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴)) |
| 16 | 15 | fveq2d 6862 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝐵)( +𝑣 ‘𝑈)𝐴))) |
| 17 | simpl2 1193 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
| 18 | 2, 3, 8 | lnof 30684 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 19 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 20 | ffvelcdm 7053 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
| 21 | 18, 19, 20 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 23 | ffvelcdm 7053 | . . . 4 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐵 ∈ 𝑋) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) | |
| 24 | 18, 22, 23 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) |
| 25 | lnosub.6 | . . . 4 ⊢ 𝑁 = ( −𝑣 ‘𝑊) | |
| 26 | 3, 5, 7, 25 | nvmval2 30572 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 27 | 17, 21, 24, 26 | syl3anc 1373 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑇‘𝐴)𝑁(𝑇‘𝐵)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘𝐴))) |
| 28 | 11, 16, 27 | 3eqtr4d 2774 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 -cneg 11406 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 −𝑣 cnsb 30518 LnOp clno 30669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-lno 30673 |
| This theorem is referenced by: blometi 30732 blocnilem 30733 ubthlem2 30800 |
| Copyright terms: Public domain | W3C validator |