| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipval3 | Structured version Visualization version GIF version | ||
| Description: Expansion of the inner product value ipval 30605. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ipval3.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| ipval3 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | dipfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | dipfval.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 4 | dipfval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | dipfval.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | ipval2 30609 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
| 7 | ipval3.3 | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 8 | 1, 2, 3, 7 | nvmval 30544 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) |
| 9 | 8 | fveq2d 6844 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) |
| 10 | 9 | oveq1d 7384 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀𝐵))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) |
| 11 | 10 | oveq2d 7385 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) |
| 12 | ax-icn 11103 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
| 13 | 1, 3 | nvscl 30528 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
| 14 | 12, 13 | mp3an2 1451 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
| 15 | 14 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
| 16 | 1, 2, 3, 7 | nvmval 30544 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
| 17 | 15, 16 | syld3an3 1411 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
| 18 | neg1cn 12147 | . . . . . . . . . . . . . 14 ⊢ -1 ∈ ℂ | |
| 19 | 1, 3 | nvsass 30530 | . . . . . . . . . . . . . 14 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
| 20 | 18, 19 | mp3anr1 1460 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
| 21 | 12, 20 | mpanr1 703 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
| 22 | 12 | mulm1i 11599 | . . . . . . . . . . . . 13 ⊢ (-1 · i) = -i |
| 23 | 22 | oveq1i 7379 | . . . . . . . . . . . 12 ⊢ ((-1 · i)𝑆𝐵) = (-i𝑆𝐵) |
| 24 | 21, 23 | eqtr3di 2779 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
| 25 | 24 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
| 26 | 25 | oveq2d 7385 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1𝑆(i𝑆𝐵))) = (𝐴𝐺(-i𝑆𝐵))) |
| 27 | 17, 26 | eqtrd 2764 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵))) |
| 28 | 27 | fveq2d 6844 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀(i𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵)))) |
| 29 | 28 | oveq1d 7384 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) |
| 30 | 29 | oveq2d 7385 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)) = (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) |
| 31 | 30 | oveq2d 7385 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2))) = (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) |
| 32 | 11, 31 | oveq12d 7387 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) |
| 33 | 32 | oveq1d 7384 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
| 34 | 6, 33 | eqtr4d 2767 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 4c4 12219 ↑cexp 14002 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑠OLD cns 30489 −𝑣 cnsb 30491 normCVcnmcv 30492 ·𝑖OLDcdip 30602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-dip 30603 |
| This theorem is referenced by: hhip 31079 |
| Copyright terms: Public domain | W3C validator |