|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ipval3 | Structured version Visualization version GIF version | ||
| Description: Expansion of the inner product value ipval 30723. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) | 
| dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | 
| dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) | 
| dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) | 
| ipval3.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) | 
| Ref | Expression | 
|---|---|
| ipval3 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dipfval.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | dipfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | dipfval.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 4 | dipfval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | dipfval.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | ipval2 30727 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | 
| 7 | ipval3.3 | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 8 | 1, 2, 3, 7 | nvmval 30662 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) | 
| 9 | 8 | fveq2d 6909 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | 
| 10 | 9 | oveq1d 7447 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀𝐵))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) | 
| 11 | 10 | oveq2d 7448 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) | 
| 12 | ax-icn 11215 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
| 13 | 1, 3 | nvscl 30646 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) | 
| 14 | 12, 13 | mp3an2 1450 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) | 
| 15 | 14 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) | 
| 16 | 1, 2, 3, 7 | nvmval 30662 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) | 
| 17 | 15, 16 | syld3an3 1410 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) | 
| 18 | neg1cn 12381 | . . . . . . . . . . . . . 14 ⊢ -1 ∈ ℂ | |
| 19 | 1, 3 | nvsass 30648 | . . . . . . . . . . . . . 14 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) | 
| 20 | 18, 19 | mp3anr1 1459 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) | 
| 21 | 12, 20 | mpanr1 703 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) | 
| 22 | 12 | mulm1i 11709 | . . . . . . . . . . . . 13 ⊢ (-1 · i) = -i | 
| 23 | 22 | oveq1i 7442 | . . . . . . . . . . . 12 ⊢ ((-1 · i)𝑆𝐵) = (-i𝑆𝐵) | 
| 24 | 21, 23 | eqtr3di 2791 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) | 
| 25 | 24 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) | 
| 26 | 25 | oveq2d 7448 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1𝑆(i𝑆𝐵))) = (𝐴𝐺(-i𝑆𝐵))) | 
| 27 | 17, 26 | eqtrd 2776 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵))) | 
| 28 | 27 | fveq2d 6909 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀(i𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵)))) | 
| 29 | 28 | oveq1d 7447 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) | 
| 30 | 29 | oveq2d 7448 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)) = (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) | 
| 31 | 30 | oveq2d 7448 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2))) = (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) | 
| 32 | 11, 31 | oveq12d 7450 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) | 
| 33 | 32 | oveq1d 7447 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | 
| 34 | 6, 33 | eqtr4d 2779 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 1c1 11157 ici 11158 + caddc 11159 · cmul 11161 − cmin 11493 -cneg 11494 / cdiv 11921 2c2 12322 4c4 12324 ↑cexp 14103 NrmCVeccnv 30604 +𝑣 cpv 30605 BaseSetcba 30606 ·𝑠OLD cns 30607 −𝑣 cnsb 30609 normCVcnmcv 30610 ·𝑖OLDcdip 30720 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-vs 30619 df-nmcv 30620 df-dip 30721 | 
| This theorem is referenced by: hhip 31197 | 
| Copyright terms: Public domain | W3C validator |