![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipval3 | Structured version Visualization version GIF version |
Description: Expansion of the inner product value ipval 30636. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ipval3.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
ipval3 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dipfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | dipfval.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | dipfval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | dipfval.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval2 30640 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
7 | ipval3.3 | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
8 | 1, 2, 3, 7 | nvmval 30575 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) |
9 | 8 | fveq2d 6905 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) |
10 | 9 | oveq1d 7439 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀𝐵))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) |
11 | 10 | oveq2d 7440 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) |
12 | ax-icn 11217 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
13 | 1, 3 | nvscl 30559 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
14 | 12, 13 | mp3an2 1446 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
15 | 14 | 3adant2 1128 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
16 | 1, 2, 3, 7 | nvmval 30575 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
17 | 15, 16 | syld3an3 1406 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
18 | neg1cn 12378 | . . . . . . . . . . . . . 14 ⊢ -1 ∈ ℂ | |
19 | 1, 3 | nvsass 30561 | . . . . . . . . . . . . . 14 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
20 | 18, 19 | mp3anr1 1455 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
21 | 12, 20 | mpanr1 701 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
22 | 12 | mulm1i 11709 | . . . . . . . . . . . . 13 ⊢ (-1 · i) = -i |
23 | 22 | oveq1i 7434 | . . . . . . . . . . . 12 ⊢ ((-1 · i)𝑆𝐵) = (-i𝑆𝐵) |
24 | 21, 23 | eqtr3di 2781 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
25 | 24 | 3adant2 1128 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
26 | 25 | oveq2d 7440 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1𝑆(i𝑆𝐵))) = (𝐴𝐺(-i𝑆𝐵))) |
27 | 17, 26 | eqtrd 2766 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵))) |
28 | 27 | fveq2d 6905 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀(i𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵)))) |
29 | 28 | oveq1d 7439 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) |
30 | 29 | oveq2d 7440 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)) = (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) |
31 | 30 | oveq2d 7440 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2))) = (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) |
32 | 11, 31 | oveq12d 7442 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) |
33 | 32 | oveq1d 7439 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
34 | 6, 33 | eqtr4d 2769 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 1c1 11159 ici 11160 + caddc 11161 · cmul 11163 − cmin 11494 -cneg 11495 / cdiv 11921 2c2 12319 4c4 12321 ↑cexp 14081 NrmCVeccnv 30517 +𝑣 cpv 30518 BaseSetcba 30519 ·𝑠OLD cns 30520 −𝑣 cnsb 30522 normCVcnmcv 30523 ·𝑖OLDcdip 30633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-sum 15691 df-grpo 30426 df-gid 30427 df-ginv 30428 df-gdiv 30429 df-ablo 30478 df-vc 30492 df-nv 30525 df-va 30528 df-ba 30529 df-sm 30530 df-0v 30531 df-vs 30532 df-nmcv 30533 df-dip 30634 |
This theorem is referenced by: hhip 31110 |
Copyright terms: Public domain | W3C validator |