Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipval3 | Structured version Visualization version GIF version |
Description: Expansion of the inner product value ipval 29065. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ipval3.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
ipval3 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dipfval.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | dipfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | dipfval.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | dipfval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | dipfval.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | 1, 2, 3, 4, 5 | ipval2 29069 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
7 | ipval3.3 | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
8 | 1, 2, 3, 7 | nvmval 29004 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) |
9 | 8 | fveq2d 6778 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) |
10 | 9 | oveq1d 7290 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀𝐵))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) |
11 | 10 | oveq2d 7291 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) |
12 | ax-icn 10930 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
13 | 1, 3 | nvscl 28988 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
14 | 12, 13 | mp3an2 1448 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
15 | 14 | 3adant2 1130 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i𝑆𝐵) ∈ 𝑋) |
16 | 1, 2, 3, 7 | nvmval 29004 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
17 | 15, 16 | syld3an3 1408 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-1𝑆(i𝑆𝐵)))) |
18 | neg1cn 12087 | . . . . . . . . . . . . . 14 ⊢ -1 ∈ ℂ | |
19 | 1, 3 | nvsass 28990 | . . . . . . . . . . . . . 14 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
20 | 18, 19 | mp3anr1 1457 | . . . . . . . . . . . . 13 ⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
21 | 12, 20 | mpanr1 700 | . . . . . . . . . . . 12 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((-1 · i)𝑆𝐵) = (-1𝑆(i𝑆𝐵))) |
22 | 12 | mulm1i 11420 | . . . . . . . . . . . . 13 ⊢ (-1 · i) = -i |
23 | 22 | oveq1i 7285 | . . . . . . . . . . . 12 ⊢ ((-1 · i)𝑆𝐵) = (-i𝑆𝐵) |
24 | 21, 23 | eqtr3di 2793 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
25 | 24 | 3adant2 1130 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(i𝑆𝐵)) = (-i𝑆𝐵)) |
26 | 25 | oveq2d 7291 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(-1𝑆(i𝑆𝐵))) = (𝐴𝐺(-i𝑆𝐵))) |
27 | 17, 26 | eqtrd 2778 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀(i𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵))) |
28 | 27 | fveq2d 6778 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀(i𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵)))) |
29 | 28 | oveq1d 7290 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) |
30 | 29 | oveq2d 7291 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)) = (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) |
31 | 30 | oveq2d 7291 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2))) = (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) |
32 | 11, 31 | oveq12d 7293 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) |
33 | 32 | oveq1d 7290 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) |
34 | 6, 33 | eqtr4d 2781 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 ici 10873 + caddc 10874 · cmul 10876 − cmin 11205 -cneg 11206 / cdiv 11632 2c2 12028 4c4 12030 ↑cexp 13782 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 −𝑣 cnsb 28951 normCVcnmcv 28952 ·𝑖OLDcdip 29062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-dip 29063 |
This theorem is referenced by: hhip 29539 |
Copyright terms: Public domain | W3C validator |